Hathkhowapara, Azara, Guwahati-781017, Assam

MMA23601T	T GENERAL TOPLOGY				
Pre-requisite: K	nowledge of Groups and Rings			•	-
Course Objectiv	es:			·	
1. To enable	e students to identify topological spacesand to classify differ	rent	spaces	s like	e first
countable	, second countable, separable spaces etc.				
2. To provid	e the idea of compactness and connectedness and give their diff	erent	t		
characteri	zations.				
3. To equip	students with the skills necessary to analyze and solve comp	plex	probl	ems	using
topologica	al methods and techniques.				
Course Outcome	2:				
After successful of	completion of the course, the students will be able to				
CO1: define an	d explain the fundamental concepts of topology, including open	and	closed	d sets	,
topologic	al spaces, bases, sub-bases, and continuous functions.				
CO 2: study var	ious separation axioms such as 10, 11, 12, etc. and their implication	ation	is.		L.a.
COS: apply key	topological properties such as compactness, connectedness, and	a cor	iverge	ence t	.0
solve cor	npiex problems in topology and related fields.	1		•	1
CO 4: identify ai	ad explore connections between topology and other branches of	matr	nemati	ics ar	Id
science, s	ich as algebra, geometry, and physics.		1	<u> </u>	
Nodule1: Intro	auction mplas of topological spaces, closed sets, closure. Donse subsets	No	I.	2 HO	urs d
Interior Exterior a	nd Boundary Accumulation Points and Derived sets, Bases and	, nei I sub	ignoot hases	Subb	iu, iase
and Relative Topo	logy. Continuous Functions and Homeomorphism.	1 500	Juses.	5400	use
Module2: Coun	table and Uncountable sets		10	0 Ho	urs
Countable and unc	ountable sets, First and second Countable spaces, Lindelof's the	eorer	n,Sep:	arable	e
spaces, Second Co	untability and Separability.		· 1		
Module3: Separ	ration Axioms		1	2Hou	irs
Separation Axiom	s T0, T1, T2, T31/2, T4; their characterizations and basic properties	s, Ur	ysohn	's lei	mma,
Tietze Extension 7	'heorem.				
Module4: Com	pactness		1	6Hot	irs
Compactness, con	tinuous functions and compact sets. Basic properties of compa	actne	ess, Co	ompa	ictness
and finite intersect	ion property, Sequentially and Countably compact sets, Local	Com	pactne	ess ai	nd one
point compactifica	ation. Stone-Cech Compactification, Compactness in metricsp	aces	, Equ	ivale	nce of
compactness, Cou	ntable compactness and sequential compactness in metricspaces				
Module5: Conn	ectedness			U Ho	
Connected spaces,	connectedness on the real line, components, totally disconnected	ed spa	aces, I	Loca	ily
connected spaces.					
Total Lecture ho	ours		6	0 Ho	urs
Text Book(s)					
I. Munkres, J	.R., <i>Topology</i> : A first course, Prentice Hall of India, 19/4.				
2. Simmons,	G.R., Introduction to Topology and Modern Analysis, McGraw	Hill,	2017.		
Reference Books					<u> </u>
1. Joshi., K.D	., Introduction to General Topology, New Age International Pri	vate	Limit	ed, 2	017.
2. Dugundji,, 3. Hocking	J. 10pology, Allyn and Bacon, 1966 (Reprinted in India By PH.	1).			
4 Steen I Δ	and Seebach I A Counter Examples in Topology Dover Public	catio	ons 19	95	
	and seconding strate ownier Examples in ropology, Dover rubin	cuilo	115, 17	15.	

Hathkhowapara, Azara, Guwahati 781017, Assam

		L	Т	P	С
MINIA236021	NUMERICAL ANALYSIS	4	0	0	4
Pre-requisite: C	alculus and Differential Equations				<u> </u>
Course Objectiv	es:				
• To understand polynomial fitt	the importance of error analysis and their propagation and techniques ing.	of in	terpo	lation	and
• To understand	methods too numerical differentiation and integration.				
• To introduce the	ne basic concepts of solving algebraic, transcendental equations and sy	ystem	ı of li	near a	and non-
linear equation	s.				
• To understand	numerical solution of ordinary differential equations.				
Course Outcome	2:				
After successful of	completion of the course, the students will be able to				
CO 1: calculate of	errors induced in the values by truncation of a series expansion.				
CO2: fit polynor	nials to a given set of data points.				
CO3: find roots	of linear and non-linear system (algebraic and transcendental) of	f equ	ation	S	
CO4: solve ordin	nary differential equations numerically.				
Module 1: Erro	r Approximation and Interpolation			15 H	lours
and backward inte interpolation.	rpolation formulae, Stirling's formula, Newton's divided differ	ence	; forn	nula,	Inverse
Module 2: Num	erical Differentiation and Integration			10 H	lours
Numerical differer Newton's backwar Quadrature formul Quadrature formula	itiation: Derivatives using Newton's forward interpolation form d interpolation formula and Derivatives using Stirling's formula, a, Trapezoidal rule, Simpson's 1/3 rd rule, Simpsons 3/8th rule, E ne.	ula, Num 300le	Deriv ierica e's Ri	vative I Inte ule, F	es using egration: Errors in
Module 3: Solut	tion of Algebraic and Transcendental Equations			15 H	lours
Bisection method- methods for solvin Gauss-Jordan met Relaxation Method	Secant Method, Regula Falsi Method, Newton-Raphson method, M g systems of linear equations: Matrix inversion methods, Gauss hod, LU decomposition; Iterative methods: Jacobi's method, C ds	fuller Elir Gaus	r's me ninat s-Sei	ethod, ion n del n	, Direct nethod, nethod,
Module 4: Solut	tion of Ordinary Differential Equations			20 H	lours
Solution of differe	ential equations: Picard's method, Taylor's series method, Eule	er's	meth	od, N	Nodified
Euler's method, I Problems, Shootin	Runge-kutta method, Predictor-corrector method, Milne's met	hod,	Bou	indar	y value
Total Lecture ho	- ours		1	60 H	lours
Text Book(s)			I		
1. K. E. Atkir 2. C. F. Geral	nson, An Introduction to Numerical Analysis, John Wiley and Sc d and P. O. Wheatley, Applied Numerical Analysis, Pearson, 7th	ns, 1 n Edi	1989 ition.	2004	

Hathkhowapara, Azara, Guwahati 781017, Assam

3. M.K. Jain, S. R. K. Iyengar, R.K. Jain, *Numerical Methods for Scientific and Engineering Computation*, New Age International, 2005

Reference Books

- 1. Niyogi P., Numerical Analysis and Algorithm, Tata Mcgraw Hill
- 2. S. D. Conte and DeBoor C., *Elementary Numerical Analysis: An Algorithmic Approach*, McGraw Hill, N.Y., 1980.

A CHOWDHURP

Hathkhowapara, Azara, Guwahati-781017, Assam

MMA23620T	NUMBER THEORY	L	Τ	P	С		
		4	0	0	4		
Pre-requisite: Knowledge of divisibility of numbers, congruences							
Course Objectives:							
• To enable	e students to learn about arithmetic functions such as Euler's	phi t	uncti	on, M	öbius		
function,	and the divisor function						
• To unders	stand the concept of primitive roots and quadratic residues						
• To study a	recent advancements and open problems in number theory						
Course Outcome	e:						
After successful co	ompletion of the course, the students will be able to						
CO1: demonstrate	e a deep understanding of number theoretic concepts and their a	pplic	ation	s.			
CO 2: solve compl	lex number theoretic problems using various techniques						
CO3: explain Fibe	onacci numbers and related identities.						
CO 4: demonstrate	e partition functions, its graphical representations and generative	e fun	ction	s.			
Module1:Introd	uction			15 Ho	urs		
Number theoretic	functions, sum and number of divisors, totally multiplicative fu	nctio	ns, d	efiniti	on and		
properties of the D	Dirichlet product, the Mobius Inversion formula, the greatest int	teger	func	tion, I	Euler's		
phi-function, Euler	r's theorem, reduced set of residues, some properties of Euler's	phi-	funct	ion.			
Module2: Primit	tive Roots			10 Ho	urs		
Primitive roots: or	der of an integer mod m, primitive roots for primes, composite	numl	pers l	naving			
primitive roots, the	eory of indices.						
Module3: Residu	ues			10 Ho	urs		
Quadratic residues	: Euler's criterion, Legendre's symbol and its properties, Quad	ratic	Recij	procity	/		
Law, Quadratic co	ngruences with composite moduli.						
Module4: Fibon	acci Numbers			10 Ho	urs		
Fibonacci numbers	s: certain identities involving Fibonacci numbers, Continued fra	ctior	ns, Pe	ell's			
equation.							
Module5:Partiti	ions			15 Ho	urs		
Partitions, graphic	al representation of partitions. Euler's theorem, generating func	tions	, sea	rch for	•		
partition identities							
Total Lecture ho	ours		(60 Ho	urs		
Text Book(s)							
1. Burton, M	. D., Elementary Number Theory, McGraw Hill Education, 201	7.					
2. Andrews,	G.E., Number Theory, Dover Publications, 2012.						
3. Molin, R.	A., <i>Algebraic Number Theory</i> , Chapman and Hall/CRC, 2011.						
Reference Books			• N 7	1	X 7:1		
1. Niven, $1., 2$	Luckerman, H. S. and Montgomery, H. L., Introduction to Theo	ry of	Num	bers,	wiley,		
2008.							

Hathkhowapara, Azara, Guwahati-781017, Assam

		_	T	D	0
MMA23621T	MEASURE THEORY			P 0	
Pre-requisite: R	eal analysis	-	U	U	-
Course Objectiv	/es:				
• To give stu	idents idea measure space, measurable functions and their prope	erties			
 To provide 	a detailed study of convergence of measurable functions.		•		
• To give st	udents idea about variations of measure space viz signed me	easure	e and	1 pro	duct
measure	adonts face about variations of measure space viz. Signed me	/ubuit	o unc	* pro	auer
Course Outcome	2:				
After successful co	ompletion of the course, the students will be able to				
CO1: apply the co	procepts of Lebesgue measure, completeness and regularity in m	ather	natic	al	
problems.					
CO2: analyze mea	asurable functions and their properties.				
CO 3: analyze mo	des of convergence, properties of Signed and complex measures	s			
CO4: apply produ	ct measures in specific mathematical problems.				
Module1: Measu	ıres			15 H	ours
Algebras and sigr	na-algebras, Measures, Outer measures, Lebesgue measures,	Com	plete	ness	and
regularity			_		
Module2: Function	ons and integrals			15 H	ours
Measurable funct	ions, Properties that hold almost everywhere, The integral	, Lir	nit t	heore	ems,
Measurable function	ons again, complex valued functions, and image measures.				
Module2: Conver	rgence, Signed and complex measures			15 H	ours
Modes of converg	ence, Definition of \mathcal{L}^p and L^p , Properties of \mathcal{L}^p and L^p , dual	spac	es, S	igneo	d and
complex measures	s, Absolute continuity, Singularity, Functions of bounded vari	ation	, Th	e dua	als of
the \mathcal{L}^p spaces.					
Module4: Produc	t Measures			15 H	ours
Construction, Fub	ini's theorem, Applications				
Total Lecture ho	urs			60 H	ours
Text Book(s)					
1. Cohn D. L	., Measure Theory, Birkhäuse, 2013				
2. de Barra G	., Measure Theory and Integration, New Age Publishers, 1st ed	1., 20	13.		
3. Halmos P.	R., Measure Theory, Springer-Verlag, 1974				
Reference Books	5				
4. Royden H.	L., Real Analysis, Pearson Education India, 2015				

Hathkhowapara, Azara, Guwahati 781017, Assam

		L	Т	P	С		
MMA23622T	HYDRODYNAMICS	4	0	0	4		
Pre-requisite: Basic knowledge of physics							
Course Objectiv	es:						
• To understand	the properties of fluids						
• To derive the e	quation of conservation of mass and its application						
• To use importa	nt concepts of equations of motion and apply the same to various prol	blems	5				
Course Outcome							
After successful c	completion of the course, the students will be able to						
CO1: understand t	he various properties of fluids and their influence on fluid motion and	anal	yse a	variety	/ of		
problems in	fluid statics and dynamics.						
CO2: derive Equation	ion of Continuity, Euler's equation of motion						
CO3: identify and a	analyse various types of fluid flow						
CO4: evaluate the	velocity potential, streamlines, path lines, equi-potential surface, stear	n fun	ction	, comp	lex		
potential for	two dimensional, irrotational, incompressible flow			-			
Module 1: Kiner	natics of fluids in motion			15 Ho	urs		
Methods of desc	cribing fluid motion: Lagrangian method, Eulerian method	; Ma	ateria	l, loc	al and		
convective derivation	atives, Path lines, Stream lines, Vortex lines, Equations of	cont	inuit	y (Car	rtesian,		
cylindrical polar a	and spherical polar)						
Module 2: Equa	tions of motion			15 Ho	urs		
Equations of motion	on of a fluid: pressure at a point in a fluid at rest, Pressure at a p	oint	in a 1	noving	g fluid,		
Conditions at a bo	oundary of two inviscid Immiscible fluids, Euler's equations of	of m	otion	, Bern	ioulli's		
equation, worked	examples, some flows involving axial symmetry, Some spe	ecial	two	-dime	nsional		
flows, Impulsive n	notion						
Module 3: Two o	limensional flow			15 Ho	urs		
Some two-dimens	ional flows: Meaning of two- dimensional flow, use of cylindri	cal p	olar	coord	inates,		
The stream functi	on, The complex potential for two-dimensional irrotational,	inco	mpre	essible	flow,		
complex velocity	potential for standard two dimensional flows, uniform stream,	line	sour	ces an	id line		
Sinks, line doublet	s, line vortices, worked examples.			15 Uo	1180		
	Thi space, Sources and Shiks			15 ПО			
Use of complex po	otential, Source, Sink, doublet, Method of images, statements	of (Circle	e and I	Blasius		
theorems, Motion	past a circular cylinder, Motion past a sphere, Stokes's strea	am fi	uncti	on; Vo	orticity		
equation, Propertie	es of vortex filaments, motion due to rectilinear vortex and	a sy	stem	OF VO	ortices;		
Kelvin's circulatio	on theorem and its use, Green's theorem and its deductions	5, AC	cyclic	e and	Cyclic		
motions, Kelvin's	minimum energy theorem			(0 II			
Total Lecture				60 HO	urs		
Text Book(s)							
1. Besant W.H. and	d Ramsay A.S., A <i>Treatise on Hydromechanics</i> , Part II, CBS Pu	ıblisł	ners a	X			
Distributors, 200)6						
2. Chorlton F., Tex	t Book of Fluid Dynamics, CBS Publishers & Distributors, 1985	5					
Reference Books							
1. Batchelor G.K.,	An Introduction to Fluid Mechanics (Ebook), New Delhi, 2002						
2. Raisinghania M	D., Fluid Dynamics, S. Chand and Co. Ltd. 2014						

Hathkhowapara, Azara, Guwahati 781017, Assam

		L	Т	Р	С
MMA23624T	SPECIAL THEORY OF RELATIVITY	4	0	0	4
Pre-requisite: (Classical mechanics and calculus				
Course Objectiv	es:				
• To study the f	undamental concept of special theory of relativity and its applications.				
To conceptu	alize the implications of the two postulates of Einstein's special t	heoi	ry of	relativ	/ity.
Course Outcome	:				
After successful o CO1: apply Galil relative mot	completion of the course, the students will be able to ean transformation and principles of Newtonian mechanics to solv ion and reference frames.	e pr	oblen	ns inv	olving
CO2: apply Lore contraction,	ntz transformations to solve problems involving relative motion, and velocity addition in the context of special relativity.	time	e dila	tion,	length
CO3: apply energy-mon	gy-momentum tensors and the action principle in relativistic system tentum tensor for special and general cases.	ms,	and c	calcula	te the
CO4: apply the t electromagn	ransformation of differential operators and Maxwell's equations for etic theory and Lorentz condition in four vector form.	r sol	ving	proble	ms in
Module1: Pre-r	elativity & Galilean transformation		1	0 Ho	urs
Newtonian Mecha of the Special The	nics, Fundamentals of Electrodynamics, Background of the Fu pry of Relativity	inda	ment	al Pos	stulates
Module2: Lore	ntz Transformations and Some Consequences		2	20 Ho	urs
Lorentz transform interpretation of Length contraction proper time. Relat Lorentz transforma	ations, relativistic concept of space and time and relativity of Lorentz transformation as a rotation. Consequences of Lorent r; Time dilation; Variation of mass; Composition of velocitie vistic law of addition of velocities and its interpretation, Invaria- ation as a group, Applications in problems. Transformation of ac	mo entz es; F ance cele	tion, tran Prope of sp ration	Geon sform r leng beed o n.	netrical ations: gth and of light,
Module3: Relati	vistic mechanics]	15 Ho	urs
Relativistic mecha of mass and energ Energy-momentum Four Vectors	nics; world events, world regions and light cone; Minkowski spa y. Energy-momentum tensors: The action principle; The electron n tensors (general); Energy-momentum tensors (special cases); C	ace- nagr Cons	time; etic ervat	equiv theory ion la	valence r; ws;
Module4: Relati	vity and Electromagnetism		1	l5 Ho	urs
Transformation of Electromagnetic p vector form, Tran potentials, Invarian tensor form, Trans	differential operators, D' Alembert's operator, Maxwell's electrotentials and Electromagnetic force, Lorentz condition, Lorents formations of charge and current density, Transformations are of Maxwell's equations, The electromagnetic field tensor, N formation equations of electric field strength and magnetic field	roma ntz s of Maxy indu	agnet cond ele well' uctior	ic equ ition f ctrom s equa n vecto	ations, in four agnetic ation in or
Total Lecture ho	purs Control C		(50 Ho	urs
Text Book(s)			1		

Hathkhowapara, Azara, Guwahati 781017, Assam

- 1. Katz R., An Introduction to the Special Theory of Relativity, Electronic edition, 2008
- 2. Robert R., Introduction to Special Relativity, John Wiley & Sons Inc., 1968

Reference Books

- 1. Rahaman F., The Special Theory of Relativity, A mathematical approach, Springer, 2014
- 2. Sardesai P. L., A primer of Special Relativity, New Age International (P) Limited, 2004
- 3. Eddington A.S., The Mathematical Theory of Relativity, Cambridge University Press, 1923

Hathkhowapara, Azara, Guwahati 781017, Assam

MMA23260T	LaTeX and HTML	L	Т	Р	С
		2	0	2	3
Pre-requisite: Ba	sic knowledge of computers			·	
Course Objective	es:				
• To provide manage, and	students with the equipped knowledge and skills necessary to eff d publish documents using LaTeX and HTML for a variety of pu	fect: irpo	ively ses.	create),
Course Outcome					
After successful co	ompletion of the course, the students will be able to				
CO1: apply LaTe	K commands to create text documents including figures, tables, l	ists	etc.		
CO2: apply mathe	ematical typesetting techniques to write complex equations and f	form	nulas		
CO3: apply LaTeX	K's built-in features to manage bibliographies and citations.				
CO4: apply HTM pages.	L tags and attributes to create well-structured and semantically r	nea	ning	ful we	b
Module1:			1	5Hou	irs
Introduction to I	LaTeX: Overview of LaTeX and its advantages, Basic documents	mer	nt str	ucture	e and
compiling; Docur	ment Formatting: Text formatting: fonts, styles, and sizes, Par	ragi	aph	forma	tting:
indentation, space	ing, and alignment, Page layout: margins, headers, and foo	oters	, M	athem	atical
Typesetting: Mat	h mode: inline and display equations, Mathematical symb	ols	and	oper	ators,
Equation environ	ments and alignment				
Module2:			1	5Hou	irs
Tables and Figure	s: Creating tables: structure, alignment, and spanning cells, Inc	lud	ing g	raphic	s and
images, Captions	, labels, and cross-referencing. Document Structure: Section	is, s	subse	ctions	, and
chapters, Lists:	itemized, enumerated, and description, Customizing docum	nen	t str	ucture	and
appearance. Bibli	ographies and Citations: Managing references with BibTeX,	Cit	ation	style	s and
formatting, Creati	ng bibliographies and citing sources; PS Tricks; Beamer present	atio	n.		
Module3:			1	5Hou	Irs
HTML, creating s	imple web pages, Modifying text, Organizing text, Making lists:	or	lered	, unor	dered
line breaks, Addir	nages and links, design of web pages.				
Total Lecture ho	urs		4	l5 hou	irs
Text Book(s)					
1. Lamport L.,	, LATEX: A Document Preparation System, User's Guide and Re	efer	ence	Manu	al.
Addison-We	esley, New York, second edition, 1994.				
2. Robbins, J.	N., Learning web design: A beginner's guide to HTML, CSS, Jav	vaSe	cript,	and v	veb
graphics. O	Reilly Media, Inc., 2012.				
ReferenceBooks					
1. Kottwitz, S.	, LaTeX beginner's guide, Packt Publishing Ltd, 2011.				
2. Martin J. Er	ickson and Donald Bindner, A Student's Guide to the Study, Pra-	ctic	e, an	d Too	ls of

Modern Mathematics, CRC Press, Boca Raton, FL, 2011.