

GIRIJANANDACHOWDHURYUNIVERSITY Hathkhowapara, Azara, Guwahati-781017, Assam

MMA23506T	LINEAR ALGEBRA	L 4	T 0	P 0	C 4	
Pre-requisite: Kn	owledge of Groups and Rings		v	v		
Course Objective	s:					
1. To provide	e a detailed study of linear transformation and related topics.					
2. To give an	idea about inner product spaces, orthogonality and canonical forms.					
Course Outcome:						
After successful co	ompletion of the course, the students will be able to					
CO1: understand	thoroughly the concept of Linear Transformation.					
CO2: define Inne	er Product Spaces, Orthogonality.					
CO 3: understand	d the concept of canonical form.					
CO4: describe bi	linear forms, Jordan forms, positive and quadratic forms.					
Module1:Linear '	Fransformation			18Ho	urs	
Linear Transformati	on. Kernel and Image of Linear Transformation. Algebra of Linear tr	ansfo	ormati	ion.		
Singular and Non-S	ingular linear transformation. Isomorphism. Representation of Linear	•		,		
Transformation as n	natrices. Linear Operators. Change of Basis. Similarity of Matrices.					
Module2:Inner P	roduct Space			15Ho	urs	
Inner product Inne	er product spaces Cauchy – Schwarz inequality Orthogonality Ortho	ogona	al Set	s and	Bases	
Gram – Schimdt of Spaces.	rthogonalization process, Orthogonal and positive definite matrices, O	Comp	lex Ir	nner p	roduct	
Module3: Canonical forms				15Hours		
Elementary canonic	al forms, Rational and Jordan form, Primary decomposition theorem,					
Module4:Bilinear	Forms			12Hours		
Bilinear forms, Mat	rices of bilinear forms, Symmetric bilinear forms, Diagonalization of	sym	netric	;		
matrices, positive ar	nd quadratic forms.					
TotalLecturehour	°S			60hou	irs	
TextBook(s)						
1. Hoffman, H Limited, (20	K.and Kunze, R. Linear Algebra, 2 nd Edition. New Delhi, India: 011).	: PH	I Lea	rning	Private	
2. Lipschutz, S	S. and Lipson, M. Schaum's outline of Linear Algebra, 6 th Edition. M	cGra	w Hil	1 LLC	2 (2018)	
KeterenceBooks		(20	00			
1. Kumaresai	n. S, Linear Algebra, A Geometric Approach, Prentice – Hall of India	ı, (20	00)			

		т	Т	D	C
MMA23507T	COMPLEX ANALYSIS	L 4	0	0	4
Pre-requisite: Kn	owledge of Complex Functions and derivatives		v	v	
Course Objective	5:				
1. To give stu	idents idea of integration over a complex plane, power series expans	ion aı	nd co	nverg	ence
of infinite	sequences and series.				
2. To provide	a detailed study of residues, its uses in evaluating integrals.				
3. To give stu	idents idea about conformal mapping, different types of transformation	ons.			
Course Outcome:					
After successful co	mpletion of the course, the students will be able to				
CO1: understand t	he behaviour of a function at much larger scale by just knowing how	the f	unctio	on	
behaves at a	n open disc in the complex plane.				
CO2: recognize th	e difference between pointwise and uniform convergence of sequenc	e and	serie	s	
of functions.					
CO 3: understand	the concepts of residues and its application in evaluation of con	nplex	integ	gral.	
CO4: understand th	ne concept of bilinear transformation, fixed points and cross ratio.				
Module1:Comple	x Integration			15Ho	urs
Cauchy-Goursat Th	eorem. Cauchy's integral formula, Higher order derivatives. Morera	's the	eorem	, Cau	ichy's
inequality and Liou	ville's Theorem. The fundamental theorem of Algebra, Gauss's M	Aean	Valu	e The	orem
Maximum Modulus	principle, Schwarz lemma, Open mapping theorem.				
Module2:Infinite	Series			15Ho	urs
Sequences and serie	s of functions, Uniform and Absolute convergence, Power Series, T	`aylor	's and	d Lau	rent's
Series, Zero and Si	ngularity of an analytic function, Entire function, Meromorphic fun	oction	. The	Argu	iment
Principle, Rouche's	theorem.				
Module3: Theory	of Residues			15Ho	urs
Residue, Calculatio	in of Residues, Cauchy's residue theorem, Evaluation of definit	ite in	itegra	Is. S_j	pecial
theorems used in ev	aluating integrals, Mittag-Leffer's theorem.				
Module4:Conform	nal Mapping			15Ho	urs
Conformal Transfo	rmation, Necessary and sufficient condition of conformal tran	nsform	natio	n, Bi	linear
transformations, Ge	ometrical inversion, Invariance of cross ratio, Fixed points of a bil	linear	tran	sform	ation,
some special biline	ar transformation e.g. real axis on itself, unit circle on itself, real a	X1S 01	n unit	circl	e etc.
Branch point and Bi	anch line, Concept of the Riemann surface.			(0)	
Total Lecture hou	Irs			60noi	ırs
TextBook(s)					
I. Spiegel. M.	R. Complex variables. Schaum's series, McGraw Hill (2009)				
2. Philips. E.C	a. Functions of complex variables with applications. Oliver and Boyd	(Ebo	ok) (1961)	
Reference Books					
1. Rudin, W.	Real and Complex Analysis, Hill Book (1987)				
2 Ablford L	I Complex Analysis McCrow Hill (1070)				

- 2. Ahlfors, L.V. Complex Analysis, McGraw Hill (1979)
- 3. Priestly, H.A. Introduction to complex Analysis, Clarendon Press Oxford, (1990)
- 4. Ablowitz, M.J. and Fokas, A.S. Complex Variables, Introduction and Application, CUP, (1998)

Hathkhowapara, Azara, Guwahati 781017, Assam

MMA23508T	MATHEMATICAL METHODS	L	T	P	C		
Pre-requisite: D	ifferentiation and Integration	4	U	0			
Course Objectives:							
• To evaluate the solutions of Fredholm and Volterra integral equations							
• To understand	the concept of Laplace Transform and its properties						
• To learn the ba	sic idea of Fourier Transform						
• To explain the	basic ideas of calculus of variations						
Course Outcome	:						
After successful c	completion of the course, the students will be able to						
CO 1: solve varie	ous kinds of Fredholm and Volterra integral equations						
CO 2: find the o	complete solution of a differential equation by using Laplace	Tran	sform	ı me	thod		
CO 3: classify and	d explain Fourier sine and cosine transforms						
CO 4: understand	d the variational problems with functional having higher order d	eriva	tives	of t	he only		
dependent	variable						
Module 1: Integ	ral Equations]	15 H	Iours		
Definition of Inte	gral Equation, Reduction of ordinary differential equations in	nto i	ntegra	al e	quations,		
Fredholm integral	equations with separable kernels, Eigen values and Eigen functi	ions,	Volt	erra	Integral		
Equations of secor	d kind, Resovant Kernal of Volterra equation and its results, Ap	oplica	ation	of it	erative		
scheme to Volterr	a equation of the second kind. Convolution type kernals.						
Module 2: Lapla	Module 2: Laplace Transform15 Hours						
Basic properties	of Laplace Transform, Convolution theorem and properties of	f cor	volu	tion,	Inverse		
Laplace Transfor	m, Application of Laplace Transform to solution of ordinary a	and p	oartia	l dif	ferential		
equations of initia	al and boundary value problems.						
Module 3: Four	ier Transform		1	15 H	Iours		
Fourier Integral	Transform. Properties of Fourier Transform, Fourier sine an	d co	sine	tran	sforms,		
Application of Fo	purier transform to ordinary and partial differential equations of	f initi	al an	d bo	oundary		
value problems. Evaluation of definite integrals.							
Module 4: Calcu	ulus of variation		1	<u>15 I</u>	Hours		
Basic ideas of calc	ulus of variations, Euler's equation with fixed boundary of the fund	ction	al cor	itain	ing only		
the first order de	rivative of the only dependent variable with respect to one	inde	pende	ent	variable,		
Variational problems with functional having higher order derivatives of the only dependent variable,							
general case of Eu	ler's equation, applications.			<u> </u>			
Total Lecture ho	burs			50 H	lours		
1 Korrwal D	D. Lincon Internal Equations. Theory and Techniques. As dem	in D		Varre	Vorl		
(1971)							
2. Spiegel M.	R., Theory and problems of Laplace Transform. Schaum's C	Outlir	e Se	ries	(1965)		
(Ebook)					、 /		

3. A.S. Gupta: Calculus of variation with Applications : Prentice Hall of India (1999)

Hathkhowapara, Azara, Guwahati 781017, Assam

Reference Books

- 1. Mikhlin S. G., Linear Integral Equations (Translated from Russia), Hindustan Book Agency (1960)
- 2. Hilderbrand F. B.. Methods of Applied Mathematics, Dover Publication (1962)
- 3. Raisinghania M. D., Integral Transforms, S. Chand and Co. (2013)
- 4. Courant R. and Hilbert D., Methods of Mathematical Physics- Vol- I, Wiley Interscience, Newyork (1953)

Hathkhowapara, Azara, Guwahati-781017, Assam

MMA23509T	PARTIAL DIFFERENTIAL EQUATIONS	L 4	T 0	P 0	C 4
Pre-requisite: P	artial Derivatives and Integration	-	v	Ŭ	-
Course Objectiv	es:				
• To give an	n introduction to Mathematical techniques in analysis of P.D.E.				
To express	and explain the physical interpretations of common forms of PDEs				
To introdu	ice various applications of partial differential equations in many	field	ls of	scienc	ce and
engineerir	ng				
Course Outcome					
After successful c	completion of the course, the students will be able to				
CO 1: solve	simplest first order PDEs				
CO 2: obtain	i the general solution of second-order differential equation				
CO 5: solve i	initial and boundary value problems on near flow and vibration				
Module 1: First (Order P.D.E.			20 H	ours
Formulation of P.D.	E, First-Order Partial Differential Equations, Quasi-Linear Equations	of Fu	st Or	der,	
Nonlinear First-Ord	er Partial Differential Equations, Charpit's and Jacobi's Methods of S	olving	g Firs	t-Orde	er
Partial Differential H	Equations, First order PDE: Characteristics of a linear first order PDE.	Cau	chy's	proble	em
Module 2: Second Order P.D.E.				20 H	ours
Origin of Second Or	der P.D.E - Linear P.D.E, Solution of Reducible Equations, Solution	of Iri	educ	ible	
Equations with Cons	stant Coefficients, Rules for Finding C.F and P.I, Classification of Sec	cond (Order	P.D.E	Ξ -
Riemann's Method,	Solution of equation by method of separation of variables				
Module 3: Applications of Partial Differential Equations				20 H	ours
Curvilinear Coord	linates, Derivation of Heat equation, Wave equation and Laplace	e equ	ation	•	
Classification of se	econd order linear equations as hyperbolic, parabolic or elliptic.	Redu	iction	n of se	econd
order Linear Equations to canonical forms. Solving the Vibrating String Problem, Solving the Heat					
Conduction proble	m.				
Total Lecture ho	ours		(60 ho	urs
Torrt Dools(g)					
1 Snedden I	Elements of partial differential equations McGraw Hill (2006)			
2. Dec K S. Introduction to portial differential exercises. Describer Hell, New Delki (1997)					
2. Kao K.S., Introduction to partial differential equations, Prentice Hall, New Deini, (1997)					
3. Raisinghannia M. D., Advanced Differential Equations: S. Chand and Company Ltd.,(Ebook) (2020)					
Reference Books					
1. Evans L. C. Partial Differential Equations, American Mathematical Society, Vol. 19, (1998)					
2. Zachmanog	ou E. C. & Thoe D. W., Introduction to Partial Differential Equation	ns wit	h Ap	plicati	ons,
Dover Publi	cations, Inc., New York (1975)				

Hathkhowapara, Azara, Guwahati 781017, Assam

		L	Т	Р	С	
MMA23510P	LAB-Partial Differential Equation-I	0	0	6	3	
Pre-requisite: Fundamental knowledge of programming						
Course Objectives:						
• To impart the l	nowledge to the students with MATHEMATICA/MATLAB softwar	e.				
To enhance pro	ogramming knowledge in Research and Development.					
Course Outcome	2:					
After successful of	completion of the course, the students will be able to					
CO1: Demonstra	te functions of two or more variables graphically and numerical	lly.				
CO 2: Compute r	nultiple integrals using MATHEMATICA/MATLAB					
CO 3: Compute a	nalytical, numerical and graphical solutions of partial differentia	al eq	uatio	ns wit	h	
initial or bo	oundary conditions.					
Module1:Functi	on of several variables		2	20Hoi	ırs	
Real-Valued Fun	ctions of Two or More Variables, Plotting Functions of Two Va	riabl	es,			
Partial derivative	s, gradient/general derivatives, Jacobian, Hessian matrix.					
Module2:Partial Differentiation30Hour				ırs		
Limits of Function	s of Two Variables, Optimization, Double and Triple Integrals,	Line	and			
Surface Integrals.						
Module3: Numerical Solution to Partial Differential Equations 40Hours					irs	
Solving Partial Di	ferential Equations, Initial Value Problem for the Heat Equation	n, Ini	tial V	alue		
Problem for the Wave Equation. Initial-Boundary Value Problem for a First-Order PDE.						
Total Lecture+ Practical Hours			9	90 Ho	urs	
Text Book(s)						
1. Feras Aw	ad, A Glimpse To Mathematica, Wolfram Language, June 7, 2019					
2. <u>https://re</u>	rerence.woilram.com/language/guide/PDEModelingAndAnalysis.htm	<u>d</u>				
3. https://re	ference.wolfram.com/language/tutorial/NDSolvePDE.html					

Hathkhowapara, Azara, Guwahati 781017, Assam

MMA23511T	INTRODUCTION TO COMPUTER	L	Т	Р	С
	PROGRAMMING	2	0	4	4
Pre-requisite: Ba	asic knowledge of programming				
Course Objectiv	es:				
To familiarize	e students with the usage of Computer Algebra Systems, e.g.,				
Mathematica/	MATLAB/Maxima/Maple etc.				
• The basic emp	bhasis is on plotting andworking with matrices using CAS.				
Course Outcome	2				
After successful c CO1: use CAS suc CO2: demonstrate using CAS. CO 3: compare and	completion of the course, the students will be able to ch as Mathematica/MATLAB/Maxima/Mapleetc. as calculator, plo skills to solve complex mathematical problems graphically, numeric d draw conclusions from the solutions obtained by using CAS.	tting ally a	funct and ar	tions. alytic	ally
Module1: Linear	Algebra			12Hoi	urs
Writing Matrices.	Check dimensions of a given matrix. Matrix addition and mu	ltiplic	cation	n, Tra	nspose,
Determinent, Inve	rse of a matrix. Minors and cofactors, Working with large	mat	rices	Perf	forming
Gauss elimination.	Solving system of linear equations Eigenvalue and Eigenvec	tors	ofa	matrix	x. Rank
and nullity of a ma	trix.				-,
Module2: Functio	ons and Their Graphs			12Hou	urs
Defining a Functi	on, Plotting a Function, Factoring and Expanding Polynom	nials,	Find	ling I	Rootsof
Polynomials analy	tically and numerically, Solving Equations and Inequalities	with	Red	uce, S	Solving
Systems of Equation	ons.				U
Module3: Multiva	ariable Calculus			18Hoi	urs
Real-Valued Funct Plotting Functions a Two-Dimensiona	ions of Two or More Variables, Plotting Functions of Two Var of Two Variables with ContourPlot, Vector Fields: Defining a al Vector Field.	iable Vect	s wit or Fie	h Plot eld, Pl	3D, lotting
Module4: Calculu	IS			18Hoi	urs
The Derivative, Vi Equations, Integra Analytic Solutions ODEs, Laplace Tra	sualizing Derivatives, Higher Order Derivatives, Implicit Diffection, Definite and Improper Integrals, Numerical Integration, Sof an ODE. Equations with Initial or Boundary Conditions. Nansform	renti Surfac Nume	ation ces of crical	, Diff f Reve Solut	erential olution, tions of
Total Lecture ho	ours		(50hou	irs
Text Book(s)			<u> </u>		

Hathkhowapara, Azara, Guwahati 781017, Assam

- 1. Bruce F. Torrence, Eve A. Torrence, *The Student's Introduction to Mathematica* ® A Handbook for *Precalculus, Calculus, and Linear Algebra, CUP*
- 2. FerasAwad (2018) A Glimpse to Mathematica [Wolfram Language] (3 rded.). Instructor Lectures and Notes.

ReferenceBooks

1. Bindner, Donald & Erickson, Martin. (2011): A Student's Guide to the Study, Practice, and Tools of Modern Mathematics. CRC Press, Taylor & Francis Group, LLC.