

Hathkhowapara, Azara, Guwahati 781017, Assam

MMA23501T	ABSTRACT ALGEBRA	L	Τ	P	С
		3	1	0	4
-	nowledge of Groups and Rings				
Course Objectiv					
-	udents idea of Automorphism and Polynomial rings.				
1	e a detailed study of field extension and its application to geome	•			
	its are able to solve some antique unsolved problems of geometr	y by	the t	heory	of
field exter	ision.				
Course Outcome	2:				
	completion of the course, the students will be able to				
	e direct product and sums of groups, solvable groups				
	polynomials of different degree and understand the concept of r	ings	of po	olynor	nials
	d the concepts of ED, UFD and PID and their properties.	-1			
CO4: describe ex	tension of fields, algebraic and transcendental elements, Galois T	heor	ry.		
	Product and Solvable Groups			15 Ho	
	d Direct sums of Groups. Decomposable groups. Normal and St	ubno	rmal	series	\$
of groups, compo	sition series, Jordan Holder theorem, solvable groups.				
Module2:Polyno				12 Ho	
	olynomial rings over a field; reducible and irreducible polynomials, C				
	in Z[x]; Eisenstein's criterion for irreducibility of $f(x)Z[x]$ over Q, ro	ots of	f poly	nomia	ls;
finite fields.	rization Theory in Integral Domains			15 Ho	
	mmutative rings, Principal Ideal Domain, Unique Factorization	Dom			
Domain and their	• •	Dom	am,	Luciic	ican
				10 TT.	
	Extension and Galois Theory	1		18 Ho	
	ime Fields. Extensions of fields. Algebraic and Transcendental etting field perfect Fields, Finite field (Moore's theorem etc.), Co		,	0	
-		msut		li Uy I	1101
±	ents of Galois theory.				
Total Lecture ho	ours			60 ho	urs
Text Book(s)					
	I. Topics in Algebra, John Wiley& Sons, 1975.				
2. Singh, S. a	nd Zameruddin, Q. Modern Algebra, Vikash Publishing House,	2006	5.		
ReferenceBooks					
1. Gallian J.	A., Contemporary Abstract Algebra (8th Edition), Cengage Lea	rning	g Ind	ia Pvt	. Ltc
	urth impression, (2015)				
A F 1 ¹ 1 T	- La D. A Einst Courses in Alberta et Alberta 74h E 1991 (2001)				

2. Fraleigh John B., A First Course in Abstract Algebra, 7th Edition, (2001)

MMA23502T		L 3	$\frac{T}{1}$	P 0	<u>C</u> 4
	S. Sc. Statics, Dynamics or equivalent		-	v	
Course Objectiv To under	es: stand the basic concept of planetary motion				
	y problems in rigid body dynamics.				
• To learn g	generalized coordinate systems				
• To introdu	ce the principles of tensor analysis				
Course Outcome					
After successful of	completion of the course, the students will be able to				
CO 1: identify an	nd describe Kepler's laws of planetary motion.				
CO 2: formulate	and solve problems in rigid body dynamics				
as function	e equations of motion for the system, which determine how the co ons of time. I the concept of tensor analysis in solving physical problems	oord	inate	es cha	nge
	ral Forces and Planetary motion			12 11	lours
General motion of inertia, Theore point, Momental	ion of Rigid Bodies of a rigid body: screw motion, Instantaneous axis of rotation Mo ems of parallel and perpendicular axes, Principal axes, Kinetic e ellipsoid-equimomental systems, Coplanar distributions, Euler's out a fixed point, Motion under no external forces	ener	nts a gy a'	bout a	oduct a fixe
Module 3: Lagr	ange's Equations			10 H	ours
Generalized coor and theory of sma	rdinates: Lagrange's equations for a holonomic system, Case of co all oscillations	ons	ervat	tive fo	orces
	niltonian Theory				lours
Hamiltonian met action	hods, Hamilton's equations, Variational method, Hamilton's and	pri	ncipl	e of l	east
Module 5: Tenso)r			16 H	ours
any order, Addit tensors, Metric derivative, Gradie	f coordinates, Contravariant vectors, Scalar invariants, Covarian ion and multiplication of tensors, Quotient Law, Riemannian tensor, Christoffel symbols, Transformation laws and their pr ent, Divergence, Curl of a vector, Riemann Chritoffel tensor, Cur arvature, Einstein tensor	spao rope	ce, F erties	Funda s, Co	menta varian
Total Lecture ho				60 H	[

Text Bo	pok(s)
1.	Chrolton. F., Textbook of Dynamics, CBS Publishers & Distributors (Indian edition), Delhi
	(1985)
2.	Eisenhart, L. P., Riemannian Geometry (Ebook), Princeton University Press, USA (1966)
D 4	
Referen	nce Books
1.	Loney, S. L., An Elementary Treatise on the Dynamics of a Particle and Rigid Bodies
	(Ebook), Cambridge University Press (2016)
2.	Weatherburn, C. E., An Introduction to Riemannian Geometry and the Tensor Calculus,
	Cambridge University Press (1938)
3.	Smith, Mathew S., Principles and Applications of Tensor Analysis (Ebook), W. Sons
	(1963)

				-	
MMA23503T	REAL ANALYSIS	L	Τ	Р	С
		3	1	0	4
	nowledge of Single and Multivariable Calculus				
Course Objectiv					
	strate students how to perform integration in terms of Reimann S			_	
-	sequences of functions and their uniform convergence and get t	the ic	leaab	out ho	ow to
	e region of convergence of power series.				
	and and apply the functions of several variables.	,		1.	
	and how Lebesgue measure on R is defined and how measures i	nay	be us	ed to	
construct in Course Outcom	0				
	completion of the course, the students will be able to				
	he Reimann – Steieltjes integrability of a bounded function.				
	d the difference between pointwise and uniform convergence of	sear	ence		
	of functions.	sequ	ence	, ,	
	d the functions of several variables and use of Implicit function	theor	em a	and St	oke's
theorem.	1				
CO4: understand	l Lebesgue measure on R and its use to construct integrals along	g witl	n basi	ic	
convergen	ce theorems for the Lebesgue integral.				
	ann – Stieltjes Integral			15Ho	
	istence of Reimann- Stieltjes Integral, Linearity Properties of				
	- Stieltjes Integral as the limit of sums, integration and different	ntiati	on, I	Funda	mental
theorem of calculu	s, Integration of vector valued functions.				
Module2:Unifor				20Но	
	ence of sequence of functions at an interval, Cauchy's criteri				
	perties of uniformly convergent sequences and series of function				
	ence with continuity, integration and differentiation, Weirst				
	ries, radius of convergence, Abel's and Tauber's theorem, Fund	ame		_	
	ions of several variables			<u>10Ho</u>	
	eral variables, Linear transformation, Derivative in an open subs				e
	, Implicit function theorem, Jacobians, Extremum problems with plier method, Differentiation of integrals, Stoke's Theorem.		Istani	.8,	
Module4: Lebes				15Ho	IIPC
	easure, Measurable sets and properties, Borel sets and their measures	sural			u15
	f measurable sets, non-measurable sets, Measurable functions as				ies
	surable functions, Sets of measure zero, Sequence of measurabl				105,
Convergence in m				,	
Total Lecture h				60hou	irs
Text Book(s)					
	G., Sherbert Donald R., Introduction to Real Analysis, John Wil	lev &	Son	s, Inc.	
NewYork	•	5		,	
	C. and Arora S Mathematical Analysis, New Age Internationa	l Pri	vate		
Limited,2					
•	I.L., Real Analysis, Prentice Hall of India, 2011				
4. Jain P.K.	and Gupta V.P., Lebesgue Measure and Integration, Anshan Lt	d., 2	012		

Hathkhowapara, Azara, Guwahati 781017, Assam

Reference Books

- 1. Rudin W., Principles of Mathematical Analysis, McGraw-Hill Education, 1976
- 2. Goldberg R.R., Methods of Real Analysis, Oxford and IBH Publishing, 2012.Pradesh
- (1955)

MMA	A23504T	ORDINARY DIFFERENTIAL EQUATION	L 4	Т 0	P 0	C 4
Pre-req	uisite: B	. Sc. Differential Equations			<u> </u>	
Course	Objective	es:				
• To	evaluate fi	rst order differential equations and show existence and uniqueness of	solu	tions		
• To s	solve secor	d order and higher order linear differential equations				
• To s	solve secor	d order differential equations using series				
	earn and in Outcome	nplement systematic approaches for solving boundary-value problem	s			
		ompletion of the course, the students will be able to				
CO2: ap		e solutions of first order and first degree differential equations ent methods to find the complete solution of a non-homogeneou	ıs dif	ferer	ıtial	
CO 4: a		ferent types of differential equations and their solutions. nethod of separation of variables to solve a boundary value prob ope.	lem	of the	e Stur	m-
		tions of First Order and First Degree			15 H	ours
Differen	tial equat	ions and their classification, Nature of solutions and app	licati	on,	Initia	l value
		ary value problems, Existence and Uniqueness problem,		d ey	cisten	ce and
		n, Simultaneous differential equations, Total differential equation	ons.			
	_	tions of Higher Order			<u>15 H</u>	
coefficie Wronsk	ents, Line	ear differential equations, General solution of higher order ear equations with variable coefficients, Solution of the ho linear independence, Reduction of order of a homogen nation.	omog	eneo	us ec	quation,
		r series solutions			15 H	ours
	nials, Fro	egeneous equations with analytic coefficients, Legendre's equations method, Bessel's equation and Bessel's functions of the				
Module	e 4: Boun	dary Value Problems for Second Order Equations			15 H	ours
Boundary	y Value P on theorer	tial Equations of the Strum-Liouville type and their prop- roblems, Eigen values and Eigen functions, Orthogonality of o n, Green's function for Ordinary Differential Equations, App	chara	cteris	stic fu	unction.
Total L	ecture ho	urs		(60 H	ours
Text Bo	ook(s)					
1.	Ross S.	L., Differential Equations, John Willey and Sons, Inc. (1984)				
2.	Simmon	s, G.F., Differential Equations with Applications and Historical	Note	es (El	000k)	, CRC
	Press, Lo	ondon (2017)				
3.	Agarwal (2009)	Ravi P., O' Regan D., Ordinary and Partial Differential Equation	ons (Eboo	vk), S _]	pringer

Hathkhowapara, Azara, Guwahati 781017, Assam

Reference Books

- 1. Ahmad S., Ambrosetti A., A Textbook on Ordinary Differential Equations (Ebook, 2nd Edition), Springer (2015)
- 2. Tenenbaum M., Pollard H., Ordinary Differential Equations (Ebook), Dover Publications, Inc. (1963)

MMA23505P	ODE LAB (MATLAB)	L 1	T	P 2	$\frac{C}{2}$
Dro roquisito: B	asic computer knowledge		0	2	2
Course Objective					
	nowledge to the students with MATLAB software.				
•	gramming knowledge in Research and Development.				
• To enhance pro	gramming knowledge in Research and Development.				
Course Outcome	•				
After successful c	ompletion of the course, the students will be able to				
CO 1: use basic co	mmands of MATLAB				
	the basics functions of MATLAB				
CO 3: plot the 2I	0, 3D figures for functions and solutions of differential equation	ons			
Module 1: Intr	oduction to MATLAB			10 Ho	urs
Components of a d	computer, Working with numbers, Machine code, Software h	ierarch	ıv. İn	troduc	tion to
	v, A first Program, Expressions, Constants, Variables and				
		assigi	ımen	t state	mems
		assigi	nmen	t state	ments
	ration (addition, multiplication, inverse, transpose).	assigi	-	t state	
Arrays, Matrix ope Module 2: Grag	ration (addition, multiplication, inverse, transpose). bh Plots			10 Ho	urs
Arrays, Matrix ope Module 2: Grag Plotting of grap	ration (addition, multiplication, inverse, transpose).	of revo	olutio	10 Ho n, cor	urs nics ir
Arrays, Matrix ope Module 2: Grag Plotting of grap	ration (addition, multiplication, inverse, transpose). h Plots ns: functions, polynomials, parametric curves, surfaces of	of revo	lutio ily o	10 Ho n, cor f diffe	urs nics ir erentia
Arrays, Matrix ope Module 2: Grap Plotting of grapl Cartesian and po equations	ration (addition, multiplication, inverse, transpose). h Plots ns: functions, polynomials, parametric curves, surfaces of	of revo	lutio ily o	10 Ho n, cor	urs nics in erentia
Arrays, Matrix ope Module 2: Grap Plotting of grap Cartesian and po equations Module 3: Esser Solution of some st	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential of the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of differential equations for the second order solution family of the second order solutio	of revo on fam	ilutio ily o equa	10 Ho n, cor f diffe 20 Ho tion,	urs nics ir erentia urs
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some si Plotting of third ord	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear l	of revo on fam	ilutio ily o equa	10 Ho n, cor f diffe 20 Ho tion,	urs nics in erentia
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear linear s	of revo on fam	olutio ily o equa	10 Ho n, cor f diffe 20 Ho tion, s ODE	urs nics ir erentia urs E with
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient Module 4: IVPs	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear linear s and BVPs	of revo on fam erential nomoge	olutio ily o equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics in erentia urs E with
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient Module 4: IVPs	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear linear s	of revo on fam erential nomoge	olutio ily o equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics ir erentia urs E with
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient Module 4: IVPs	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear s and BVPs ds for IVPs, Solution of homogeneous equations, Solution of	of revo on fam erential nomoge	equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics ir erentia urs E with urs
Arrays, Matrix ope Module 2: Grap Plotting of grapl Cartesian and po equations Module 3: Essen Solution of some so Plotting of third ord constant coefficient Module 4: IVPs Numerical method	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear s and BVPs ds for IVPs, Solution of homogeneous equations, Solution of	of revo on fam erential nomoge	equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics in erentia urs E with urs
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient Module 4: IVPs Numerical method Total Lecture + 1 Text Book(s)	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear s and BVPs ds for IVPs, Solution of homogeneous equations, Solution of	of revo on fam erential nomoge	equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics in erentia urs E with urs
Arrays, Matrix ope Module 2: Grap Plotting of graph Cartesian and po equations Module 3: Essen Solution of some s Plotting of third ord constant coefficient Module 4: IVPs Numerical method Total Lecture + 1 Text Book(s)	ration (addition, multiplication, inverse, transpose). bh Plots ns: functions, polynomials, parametric curves, surfaces of lar coordinates, Plotting of first and second order solution ntial Ordinary Differential Equations imple ODEs, Plotting of second order solution family of differential equation, Second order linear linear s and BVPs ds for IVPs, Solution of homogeneous equations, Solution of Practical Hours	of revo on fam erential nomoge	equa eneou	10 Ho n, cor f diffe 20 Ho tion, s ODE 20 Ho	urs nics ir erentia urs E with urs

Pre-requisite: Knowledge of Mathematics at Class XI & XII Course Objectives: • To make the students familiar with the basic statistical concepts and tools which are needed to study situations involving uncertainty or randomness. • To render the students to several examples and exercises those blend their everyday experiences with their scientific interests. Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 45 hour Total Lecture hours 45 hour Torobability distribution; Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines.	MMA23230T	BASIC STATISTICS	L 3	Т 0	P 0	C 3
Course Objectives: • To make the students familiar with the basic statistical concepts and tools which are needed to study situations involving uncertainty or randomness. • To render the students to several examples and exercises those blend their everyday experiences with their scientific interests. Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of orobability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Medule 3: Introduction to Statistics 10 Hour Medule 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. <	Pre-requisite:	Knowledge of Mathematics at Class XI & XII	5	U	U	5
needed to study situations involving uncertainty or randomness. To render the students to several examples and exercises those blend their everyday experiences with their scientific interests. Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of orobability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating unction, Skewness and Kurtosis 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 15 Hours Total Lecture hours <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
 To render the students to several examples and exercises those blend their everyday experiences with their scientific interests. Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 101 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem Module 2: Random Variable 101 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution Module 3: Introduction to Statistics 101 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis Module 4: Bivariate Data 15 Hours Ist Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. Total Lecture hours 45 for the square and straistics with Applications (8th ed.), Pearson Education, Inc., (2013). Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	• To mal	te the students familiar with the basic statistical concepts and to	ools v	whic	h are	
experiences with their scientific interests. Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of orobability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Medule 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. Total Lecture hours 45 hour Text Book(s) 1.	needed	to study situations involving uncertainty or randomness.				
Course Outcome: After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour			their	ever	yday	
After successful completion of the course, the students will be able to CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition law of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Text Book(s) 1 Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson. Education, Inc., (2013). 3. Ross S. M. Introduction to Probability Models (11th ed.). E						
CO 1: learn about probability and moment generating functions. CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Text Book(s) 1 Hog R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.), Pearson Education, Inc., (2013). 2 Miller I. & Miller M., Jo						
CO 2: know about various distributions such as Binomial, Poisson and Normal distributions. CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition law of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Text Book(s) 1 Hog R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.), Pearson Education, Inc., (2013). 2 Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
CO 3: measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Text Book(s) 1 Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 1 Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 1 Reference Books 1 Modul, 2014). 1 1 Modu, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
helping to predict one variable in terms of the other, i.e., correlation and linear regression. Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hours Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 16 Hour Total Lecture hours 45 hour Text Book(s) 1 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D.		,				
regression. 10 Hour Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour Text Book(s) 1 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statist						on
Module 1: Introduction to Probability 10 Hour Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour Text Book(s) 1 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	-		and In	near		
Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. 45 hour Total Lecture hours 45 hour Pearson Education, Inc., (2013). 10 Hours, Niller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	regres	Sion.				
Random experiment, Sample space, Events, Definition of probability and examples, Addition aw of probability, Conditional probability, Baye's Theorem 10 Hour Module 2: Random Variable 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. 45 hour Total Lecture hours 45 hour Pearson Education, Inc., (2013). 10 Hours, Niller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Module 1: In	itroduction to Probability			10 H	our
aw of probability, Conditional probability, Baye's Theorem 10 Hour Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution 10 Hour Module 3: Introduction to Statistics 10 Hour Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. 45 hour Total Lecture hours 45 hour Text Book(s) 11 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 10 Hiller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics			mple	es, A	dditio	n
Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution Module 3: Introduction to Statistics 10 Hours Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour Pearson Education, Inc., (2013). 1 Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 2 Reference Books 1 Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics			1			
Random Variable, Probability distribution: Discrete and Continuous, Mean and Variance of probability distribution, Binomial distribution, Poisson's and Normal distribution Module 3: Introduction to Statistics 10 Hours Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour Pearson Education, Inc., (2013). 1 Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 2 Reference Books 1 Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics						
module 3: Introduction to Statistics 10 Hours Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. 45 hour Total Lecture hours 45 hour Text Book(s) 1 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 8. Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). 8. Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Module 2: R	andom Variable			10 H	our
Module 3: Introduction to Statistics 10 Hours Measures of central Tendency, Measures of dispersion, Moments and moment generating function, Skewness and Kurtosis Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. 45 hour Total Lecture hours 45 hour Text Book(s) 1 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Random Vari	able, Probability distribution: Discrete and Continuous, Mean a	und V	'aria	nce o	f
Measures of central Tendency, Measures of dispersion, Moments and moment generating Function, Skewness and Kurtosis Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight Ines. Total Lecture hours 45 hour Text Book(s) 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	probability dist	ibution, Binomial distribution, Poisson's and Normal distributi	ion			
Function, Skewness and Kurtosis 15 Hours Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. 45 hour Total Lecture hours 45 hour Text Book(s) 45 hour 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 1000000000000000000000000000000000000	Module 3: In	roduction to Statistics		1	0 Ho	urs
Module 4: Bivariate Data 15 Hours Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. Total Lecture hours 45 hour Text Book(s) 1. 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Measures of ce	ntral Tendency, Measures of dispersion, Moments and moment	t gen	erati	ng	
Bivariate data: Definition, Scatter diagram, Simple and multiple correlation, Rank correlation, Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight ines. Total Lecture hours 45 hour Text Book(s) 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	function, Skew	ness and Kurtosis				
 Simple linear Regression, Lines of regression, Principle of least squares and fitting of straight lines. Total Lecture hours 45 hour Text Book(s) Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	Module 4: Bi	variate Data		15	5 Hoi	irs
Ines. 45 hour Total Lecture hours 45 hour Text Book(s) 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Bivariate data:	Definition, Scatter diagram, Simple and multiple correlation, R	Rank	corre	elatio	n,
Total Lecture hours 45 hour Text Book(s) 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Simple linear R	egression, Lines of regression, Principle of least squares and fit	tting	of st	raigh	t
 Text Book(s) 1. Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	ines.					
 Hogg R. V., McKean J.W., & Craig A. T., Introduction to Mathematical Statistics (7th ed.) Pearson Education, Inc., (2013). Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	Total Lecture	hours		4	45 ha	urs
 Pearson Education, Inc., (2013). 2. Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). 3. Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	2000 2000 2000					
 Miller I. & Miller M., John E. F., Mathematical Statistics with Applications (8th ed.), Pearson. Dorling Kindersley (India), (2014). Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 					(7.1	d.).
 Pearson. Dorling Kindersley (India), (2014). Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	Text Book(s)	., McKean J.W., & Craig A. T., Introduction to Mathematical S	Statis	tics ((7th e	
 Ross S. M. Introduction to Probability Models (11th ed.). Elsevier Inc., (2014). Reference Books Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics 	Text Book(s) 1. Hogg R. V Pearson Ed	ucation, Inc., (2013).				
Reference Books 1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Text Book(s) 1. Hogg R. V Pearson Ed	ucation, Inc., (2013).				
1. Mood, A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory of Statistics	Text Book(s) 1. Hogg R. V Pearson Ed 2. Miller I. & Pearson. De	ucation, Inc., (2013). Miller M., John E. F., Mathematical Statistics with Application orling Kindersley (India), (2014).	ns (8t	h ed		
	Text Book(s) 1. Hogg R. V Pearson Ed 2. Miller I. & Pearson. De	ucation, Inc., (2013). Miller M., John E. F., Mathematical Statistics with Application orling Kindersley (India), (2014).	ns (8t	h ed		
	Text Book(s)1. Hogg R. VPearson Ed2. Miller I. &Pearson. De3. Ross S. M.	ucation, Inc., (2013). Miller M., John E. F., Mathematical Statistics with Application orling Kindersley (India), (2014). Introduction to Probability Models (11th ed.). Elsevier Inc., (20	ns (8t	h ed		
	Text Book(s)1. Hogg R. V Pearson Ed2. Miller I. & Pearson. D3. Ross S. M.Reference Bo	ucation, Inc., (2013). Miller M., John E. F., Mathematical Statistics with Application orling Kindersley (India), (2014). Introduction to Probability Models (11th ed.). Elsevier Inc., (20 oks	ns (8t 014).	h ed	.),	
	Text Book(s)1. Hogg R. V Pearson Ed2. Miller I. & Pearson. De3. Ross S. M.Reference Bo1. Mood,	ucation, Inc., (2013). Miller M., John E. F., Mathematical Statistics with Application orling Kindersley (India), (2014). Introduction to Probability Models (11th ed.). Elsevier Inc., (20 oks A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theor	ns (8t 014).	h ed	.),	