Girijananda Chowdhury University, Assam

Course Structure and detailed syllabi for three semesters for

Four Year Under Graduate Programme (FYUGP) in Physics

Г

SUMMARISED COURSE STRUCTURE										
SEM	DSC	DSC (Minor)	MDC	AEC	SEC	VAC	I D	nternship/ issertation/ project	Credit	Exit option
	(Major)									
Ι	4	4+4	3	2	3	2			22	Certification
II	4	4+4	3	2	3	2			22	
III	4	4+4	3	2	3	-			20	Diploma
IV	16	-	-	2		2			20	
V	16	-	-		-			4	20	Bachelor
VI	20	-	-	-	-	-			20	Degree
Credit								Total	124	
VII	8	4+4	-	-		-	-	Project/Dis sert ation I (4)/ Core(4)	20	Bachelor Degree (Honours)/ Honours
VIII	12	-	-	-		-	-	Project/Diss ert ation II (8)/ Core(4+4)	20	(with Research)
Credit								Total	164	

1

	YEAR – 1			
	First Semester			
Code	Course	Category of	L-T-P	Total
		Course		Credit
	Introductory Physics	Core	4-0-0	4
	*MINOR-1	Minor	4-0-0	4
	*MINOR-2	Minor	4-0-0	4
	**MDC-I	MDC	3-0-0	3
	AEC-I	AEC	2-0-0	2
	SEC-I	SEC	3-0-0	3
	VAC-I	VAC	2-0-0	2
			TOTAL	22

Second Semester					
Code	Course	Category of	L-T-P	Total	
		Course		Credit	
	Physics in Everyday Life	Core	4-0-0	4	
	*MINOR-3	Minor	4-0-0	4	
	*MINOR-4	Minor	4-0-0	4	
	**MDC-II	MDC	3-0-0	3	
	AEC-II	AEC	2-0-0	2	
	SEC - II	SEC	3-0-0	3	
	VAC -II	VAC	2-0-0	2	
			TOTAL	22	

EXIT OPTION WITH CERTIFICATION. However, such students who desire to exit after 1 year of study need to undertake a vocational course (4 credits).

*Refer AnnexureI, **Refer AnnexureII

YEAR – 2

	Third Semester				
Code	Course	Category of	L-T-P	Total	
		Course		Credit	
	Mathematical Physics-I	Core	3-0-2	4	

*	*MINOR-5	Minor	3-0-2	4
*	*MINOR-6	Minor	4-0-0	4
*	**MDC-III	MDC	3-0-0	3
A	AEC – III	AEC	2-0-0	2
S	SEC - III	SEC	3-0-0	3
			TOTAL	20

Fourth Semester					
Code	Course	Category	L-T-P	Total	
		of Course		Credit	
	Mechanics and Properties of	Major	4-0-0	4	
	Matter				
	Electricity and Magnetism	Major	4-0-0	4	
	Mechanics and Properties of	Major	0-0-4	2	
	Matter - Lab				
	Electricity and Magnetism-Lab	Major	0-0-4	2	
	***Elective-1	Major	In	4	
			Annexure		
			III		
	AEC-IV	AEC	2-0-0	2	
	VAC-III	SEC	2-0-0	2	
			TOTAL	20	

* Refer Annexure-I, ** Refer Annexure-II, ***Refer Annexure-III

N.B: Course Codes of the courses offered from department is provided.

EXIT OPTION WITH DIPLOMA. However, such students who desire to exit after 2 years of study need to undertake a vocational course (4 credits).

YEAR – 3								
	Fifth Semester							
Code	Course	Category	L-T-P	Total				
		of Course		Credit				
	Analog Electronics	Major	4-0-0	4				
	Waves and Optics	Major	4-0-0	4				
	Analog Electronics-Lab	Major	0-0-4	2				

Waves and Optics-Lab	Major	0-0-4	2
***Elective-2	Major	4-0-0	4
Internship	Major	0-0-8	4
		TOTAL	20

***Refer Annexure III

	Sixth Semester					
Code	Course	Category of Course	L-T-P	Total Credit		
	Thermal Physics	Major	4-0-0	4		
	Digital Electronics	Major	4-0-0	4		
	Quantum Mechanics	Major	4-0-0	4		
	Thermal Physics- Lab	Major	0-0-4	2		
	Digital Electronics-Lab	Major	0-0-4	2		
	***Elective-3	Major	4-0-0	4		
			TOTAL	20		

***Refer Annexure III

EXIT OPTION WITH THREE YEARS BACHELOR'S DEGREE

(A)FOUR YEARS BACHELOR'S DEGREE (HONOURS)

	Seventh Semester			
Code	Course	Category	L-T-P	Total
		of Course		Credit
	Condensed Matter Physics	Major	3-0-2	4
	Research Methodology	Major	4-0-0	4
	***Elective-4	Major	4-0-0	4
	*MINOR-7	Minor	3-0-2	4
	*MINOR-8	Minor	3-0-2	4
			TOTAL	20

*Refer Annexure I, *** Refer Annexure III

	Eight Semester			
Code	Course	Category	L-T-P	Total
		of Course		Credit
	Electromagnetic Theory	Major	3-0-2	4
	Statistical Mechanics	Major	3-0-2	4

Modern Physics	Major	3-0-2	4
Introductory Astrophysics	Major	4-0-0	4
Mathematical Physics-II	Major	4-0-0	4
		TOTAL	20

EXIT OPTION WITH FOUR YEARS BACHELOR DEGREE (HONOURS)

(B)FOUR YEARS BACHELOR'S DEGREE (HONOURS WITH RESEARCH)

	Seventh Semester							
Code	Course	Category	L-T-P	Total				
		of Course		Credit				
	Condensed Matter Physics	Major	3-0-2	4				
	Research Methodology	Major	4-0-0	4				
	Research Project(Phase-I)	Major	0-0-8	4				
	*MINOR-7	Minor	3-0-2	4				
	*MINOR-8	Minor	3-0-2	4				
			TOTAL	20				

*Refer Annexure I

Eight Semester						
Code	Course	Category	L-T-P	Total		
		of Course		Credit		
	Electromagnetic Theory	Major	3-0-2	4		
	Statistical Mechanics	Major	3-0-2	4		
	Modern Physics	Major	3-0-2	4		
	Research Project(Phase-II)	Major	0-0-16	8		
			TOTAL	20		

EXIT OPTION WITH DEGREE (HONOURS WITH RESEARCH)

LIST OF COURSES:

ANNEXURE-I: (MINOR COURSES)							
Course	Semester	Name of the Course	L-T-P	Total			
				Credit			
MINOR-1	Ι	Introductory Physics	4-0-0	4			
MINOR-2	Ι	Renewable Energy Resources	4-0-0	4			
MINOR-3	II	Physics in Everyday Life	4-0-0	4			
MINOR-4	II	Atmospheric Physics	4-0-0	4			

MINOR-5	III	Mathematical Physics-I	3-0-2	4
MINOR-6	III	Sports Science	4-0-0	4
MINOR-7	VII	Mechanics	3-0-2	4
MINOR-8	VII	Electricity, Magnetism and Electromagnetic	3-0-2	4
		Theory		

ANNEXURE-II: (MDC COURSES)							
Course	Semester	Name of the Course	L-T-P To				
				Credit			
MDC-1	Ι	Physics For All	3-0-0	3			
MDC-2	II	Physics of Earth	3-0-0	3			
MDC-3	III	Indian Contribution to Science	3-0-0	3			

ANNEXURE-III: (ELECTIVE COURSES)							
Course	Semester	Name of the Course	Course	L-T-P	Total		
			Code		Credi		
					t		
Elective-1	IV	(a) Laser and Nonlinear Optics		4-0-0	4		
		(b) Computational Physics		3-0-2			
		(c) Introduction into Nanoscience		4-0-0			
Elective-2	V	(a) Sustainability Science		4-0-0	4		
		(b) Crystal Analysis		4-0-0			
Elective -3	VII	(a) Plasma Physics		4-0-0	4		
		(b) Spectroscopy		4-0-0			
Elective -4	VIII	(a) Nuclear Physics		4-0-0	4		
		(b) Advanced Quantum Mechanics		4-0-0			

Detailed Syllabi for six semesters:

SEMESTER-I

DSC	Introductory Division	L	Т	Р	С		
(Major+Minor)	introductory rhysics	4	0	0	4		
Pre-requisite: Bas	Pre-requisite: Basic Science						
Course Objectives:							

1.	To provide the	e fundamental	knowledge	of measurements	and dimensions
	10 010 1100 0110		1110	01 111000000000000000000000000000000000	

- 2. To enable students to develop an understanding of different types of matter and their properties.
- 3. To make students familiar with motion, force and work from the point of view of Physics
- 4. To introduce the basic ideas about sound propagation through various media.

Course Outcome:

After successful completion of the course, the students will be able to

CO1: remember the units of fundamental quantities, the basic constituents and nature of matter, motion, force, work and sound.

- CO 2: understand the fundamental properties of matter, gravitational forces, work done and sound.
- CO 3: analyse the action of forces on bodies and energy and work done.

CO 4: apply the knowledge gained to measure fundamental physical quantities.

Module 1: PHYSICAL WORLD AND ITS MEASUREMENTS	8 hours				
Physics and its scope, Units and Measurements, Errors in Measurements, Dimensional Analysis					
Activity ·					

1) To measure fundamental quantities – length (using slide calipers), diameter (using screw gauge), time (using stop clock), weight (using physical balance)

Module 2: MATTER – NATURE AND BEHAVIOUR

Definition of matter, solid, liquid and gas, characteristics - shape, volume and density, change of state - melting (absorption of heat, freezing, evaporation, condensation, sublimation Elements, compounds and mixtures - heterogeneous and homogeneous mixtures

Atoms and molecules, Chemical formula for common compounds, atomic and molecular masses Electrons, protons and neutrons, valency, atomic number and mass number, isotopes and isobars. **Activity :**

1) Determination of melting point of ice and boiling point of water.

2) Preparation of mixture and compound

Module 3: MOTION, FORCE AND WORK

22 hours Distance and displacement, velocity, uniform and non-uniform motion along a straight line,

20 hours

10 hours

60 hours

acceleration, distance-time and velocity-time graphs for uniform motion and uniformly accelerated motion, elementary idea of uniform circular motion.

Gravitation, Universal Law of Gravitation, force of gravitation of the earth (gravity), acceleration due to gravity, mass and weight, free fall

Work done by a force, energy, power, kinetic and potential energy, Law of conservation of energy (excluding commercial unit of energy)

Module 4: SOUND

Nature of sound and its propagation through various media, speed of sound, range of hearing in humans, ultrasound, reflection of sound, echo

Total Lecture hours

Activity :

1) Determination of melting point of ice and boiling point of water.

2) Preparation of mixture and compound.

Text Book(s)

- Science Textbook for classes IX and X, NCERT Publication 1.
- 2. Physics, Part I for class XI, NCERT Publication

Reference Books

Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker, (John Wiley & Sons 1. Inc.)

	DSC	Renewable Energy Resources	L	T	P	C
(N	(linor)		4	U	0	4
Pre	-requisite:	Basic Science				
Cou	Irse Objec	uves:		tama	4	
	1. 10 pro	vide knowledge about the depleting non-renewable energy sources a	and a	terna	tive	
,	2 To enable students to develop an understanding of the different applications of renewable					
	2. IU Clic		15 01 1	CIICW	aute	
	3 To make students aware of wind energy and its harvesting and solar energy					
	4. To dev	velop fundamental idea regarding ocean energy and its potential as a	, n ene	røv re	esour	ce.
	5. To pro	vide fundamental knowledge regarding geothermal energy and hydr	o ene	rgv.		
Cou	rse Outco	ome:		0,		
Afte	er successf	ul completion of the course, the students will be able to				
CO	l·understa	nd and appreciate the need to shift to renewable energy resources				
CO	7. rememb	wer the fundamentals of fossil fuels solar energy wind energy ocean	n enei	ov ar	hd	
	hormal an	d hydro energy		gy ai	iu	
	2. analyzza	the homesting of non-conventional courses of energy.				
	5: analyze	the narvesting of non-conventional sources of energy.	1			
	4: apply t	the knowledge of renewable energy resources gained to practica	l situ	ation	<u>IS.</u>	
NIO	<u>ule 1: FC</u>	DSIL FUELS AND ALTERNATE SOURCES OF ENERGY		9	hour	<u>S</u>
Foss	sil tuels a	a nuclear energy and their limitation, need of renewable energy	7, noi	1-con	venti	onal
ener	gy source	anargy biomass biochemical conversion biogas generation bydrow	alactr	, will icity	ia ene	ngy
Mo	dule 2. SC	AR ENERGY		19	8 hou	rc
Sola	r energy	ts importance storage of solar energy solar pond solar w	ater	heat	o nou	olar
cool	cer solar	green houses solar cell absorption air conditioning need and	l cha	racte	ristics	of
phot	tovoltaic(F	V) systems. PV models and equivalent circuits, sun tracking system	s.	14010	100101	, 01
Acti	ivity :	\mathcal{J}_{1}				
1) T	o build a s	olar greenhouse				
2) T	o build a s	olar box cooker				
Moo	dule 3: W	IND ENERGY HARVESTING		1	18 ho	urs
Fun	damentals	of wind energy, wind turbines and different electrical machines in w	vind t	urbin	es,	
pow	er electror	nic interfaces and grid interconnection topologies, wind energy conv	ersio	ı, wir	nd mi	11,
basi	c compone	ents of wind mill conversion system, types of wind mills, conversion	and	effici	ency.	
Acti	ivity :					
3) T	o construc	t a vertical wind turbine.				
Mo	dule 4: OC	CEAN ENERGY		5	s hou	rs
Oce	an energy	potential against wind and solar, wave characteristics and stati	stics,	wav	e ene	ergy
	ces.	istics and statistics, tide energy technologies, ocean thermal ener	av o	emoti	0 00	vor
	n hio-mas	s statistics, the energy technologies, ocean thermal energy	gy, o	smou	ic po	wer,
Mo	dule 5. CI	S COTHERMAL ENERGY AND HVDRO ENERGY			7 hou	rc
Goo	thermal ro	sources geothermal technologies			nou	1.0
Hvd	ronower r	esources, bydronower technologies, environmental impact of hydron	nowe	r sou	rces	
Tot	al Lecture	hours			50 hn	urs
Tex	t Book(s)					
1.	Non-con	ventional Energy Sources – G. D Rai, Khanna Publications, 2001				
2.	Non-con	ventional Energy Resources – B. H. Khan, McGraw Hill, 3 rd edition.	2017	7		
Ref	erence Bo	oks				
1.	Solar End	ergy – Suhas P. Sukhative, Tata McGraw Hill Publishing Company	Limit	ed.		
2.	Wind En	ergy System – Gary L. Johnson, Printice Hall Inc., New Jersey, 1985	5.			
L						

MDC	PHYSICS FOR ALL	L	T 0	P 0	C 3
Pre-requisite:	Preliminary concept of Science and Mathematics.	5	U	U	5
Course Object	tive				
(1)To enhance	e the fundamental knowledge of systems of units to be used in dail	y life.			
(2) To have a	broader concept of laws to understand planetary motion, satellites a	and Gl	oba	1	
Positioning S	ystem.				
(3)To enhance	e the knowledge of basics heat and thermodynamics and understand	ling ba	sics	s of	
home applian	ces.				
(4) To enhanc	e the knowledge of sound and its propagation.				
(5) To develo	bp the concept of different phenomena associated with light.				
Course Outco					
After success	ful completion of the course, the students will be able				
CO1: to lear	n different units and laws connected with motion, heat, sound, li	ght.			
CO 2: to und	erstand the basics of kinematics, sound, heat and light.				
CO 3: to app	y the concepts of physics in understanding the mechanism of va	rious i	nsti	rume	nts.
CO 4: to app	by the concepts of basic physics to learn the various facts about r	lature.			
Module 1: Ur	its and Measurements		1	0 ho	urs
CGS, FPS, M	IKS, SI system of units, their inter conversion relations, Dimension	ional			
formula of pl	sysical quantities. Dimension analysis and its applications to sim	ıple			
problems, Pro	oblems on conversion among system of units, . Measured value a	and			
absolute valu	e; Accuracy and Precision, Error in measurement and its Types,	Error			
estimation fo	estimation formulae.				
Module 2: Mechanics				.0 ho	urs
Scalar and V	ector quantities, distance, displacement, speed, velocity, acceler	ation,			
Circular moti	on, rotational motion, preliminary idea of angular displacement	.,			
velocity, Plar	netary motion, Gravitational force, acceleration due to gravity in				
different plac	es, concept of inertia, Newton's laws, natural and artificial satel	lites,			
examples, int	roduction to global positioning system				
Module 3: He	eat			9 hou	ırs
Concepts of I	Heat and Tempearture, Units of temperature: Centigrade, Fahren	heit ar	nd K	Celvi	n
scale, their in	ter-conversion formulae, Heat transfer processes: conduction, co	onvect	ion	and	
radiation, exp	planation of change of states of matter, working principles of Re	efriger	ator	, Air	
Conditioner,	Microwave Oven.				
Module 4: So	und		8	b hou	ırs
Longitudinal	nature of sound, Frequency, and its unit and Pitch, Loudness and	d Inter	nsity	/,	
Production and	nd detection of sound, Audible frequency range, infrasonic and	ultrasc	onic	sour	ıds,
Noise and M	usic, Principle of Loudspeaker and Microphone, vibration and p	oroduct	tion	of	
sound in Mus	sical Instruments				
Module 5: I	ight		8	6 hou	rs
Reflection, R	efraction and Dispersion of light, Application of formation of in	nages l	<mark>э</mark> у р	lane	
mirror, conve	ex and concave mirror, formation of rainbow, scattering of colou	rs duri	ing	sunri	se
and sunset, blue colour of sky, light production in bulb, different types of light bulbs, Laser,					
LED, Solar s	pectrum		- 1		
Total Lecture	hours		4	5 ho	ours
Text Book(s)					
1. Concept	ual Physics, Paul G. Hewitt, Pearson Education, 2017.				

- 2 Physics Made Simple: A complete Introduction to the basic principles of this fundamental science, Christopher G. De Pree, Crown Publisher, 2005
- 3. Concept of Physics, H.C Verma, Bharat Bhawan Publisher, 2021

Reference Books

- 1. The Basics of Physics, Rusty L. Myers, Greenwood Press, 2005
- 2. AK Basics of Physics, Anil Kumar Kakodiya, 2023.

SEMESTER-II

DSC	DIVOLCO IN EVEDVDAVI JEE	L	Т	Р	C
(major+minor)	PHYSICS IN EVERYDAY LIFE	4	0	0	4
Pre-requisite: Pr	eliminary concept of Science and Mathematics				
Course Objectiv	es:				
(1)To enhance the	(1)To enhance the fundamental knowledge of laws of motion which is helpful to understand the				
excitement in related activities of life.					
(2)To have an ov	verview of heat and temperature in understanding the theory beh	ind tl	herm	omete	ers,
woodstoves etc.					
(3)To develop a	concept on sound waves to relate with different instruments.				
(4)To create more	e awareness about electricity and magnetism to relate the theory	to p	ractic	cal lif	e.
(5)To enhance th	the theory of light propagation, formation of images, lasers etc.				
Course Outcome	2:				
After successful	completion of the course, the students will be able				
CO1: to underst	and the basic concepts of Physics to understand the dynamics	of o	bject	s, he	at
and thermodyna	mics, sound, electricity and magnetism and light.		5		
CO 2: to apply t	he fundamentals of Physics to various instruments we use in	our c	laily	life.	
CO 3: to disting	uish between different theories applied in applications in vari	ous i	nstru	imen	ts.
CO 4: to identif	v the laws of physics behind various natural phenomena and a	activ	ities.		
	5 F				
Module 1: The l	aws of motion		-	15 ho	urs
Skating: Inertia,	vector quantities, position, velocity, force, acceleration, mass, n	et			
force, Newton's	first and second laws, inertial frames of reference, unit				
Falling Bodies:	gravity, weight, uniform acceleration, projectile motion, vector				
components, sup	port forces, Newton's third law, energy, work, conservation of e	energ	y,		
kinetic and poter	itial energies, gravitational potential energy, ramp & its mechan	ical	-		
advantage					
Seesaws: rotatio	nal inertia; angular velocity; torque; angular acceleration; rotatio	onal			
mass, net torque	; Newton's first, second, and third laws of motion; centres of ma	iss ar	ıd		
gravity; levers; b	alance				
Rockets and Spa	ce Travel: reaction forces, law of universal gravitation, elliptical	1			
orbits, escape ve	locity, Kepler's laws, speed of light, concepts of general and spe	ecial			
relativity, equiva	lence principle.				
(Explanation is t	o be done with related experiments)				
Module 2: Heat	and Temperature			10 ho	ours
Scales: Thermal	energy, Heat and Temperature, different scales of measuring				
temperature & th	eir relations.				
Woodstoves: thermal equilibrium, chemical bonds and reactions, conduction, thermal					
conductivity, convection, radiation, heat capacity					
Water, Steam an	d Ice: phases of matter, phase transitions, melting, freezing,				
condensation, ev	aporation, relative humidity, latent heats of melting and evaporation	tion,			
sublimation, dep	osition, boiling, Airconditioners.				

(Explanation is to be done with related experiments)								
Module 3: Sound		10 ho	ours					
Waves: wave motion, transverse and longitudinal waves.								
Clocks : time and space, natural resonance, harmonic oscillators, simple harmonic motion and its								
frequency, period, amplitude								
Musical Instruments: sound; music; vibrations in strings, air, and surfaces; fundamental and higher-								
order modes; harmonic and non harmonic overtones; sympathetic vibration; standing and								
travelling waves; transverse and longitudinal waves; velocity and wavelength of mechanical								
waves; superposition, different types of musical instruments								
(Explanation is to be done with related experiments)								
Module 4: Electricity and magnetism		15 ho	ours					
Static Electricity: electric charge, electrostatic forces, Coulomb's law, electrostatic p	otent	tial						
energy, voltage, charging by contact, electric polarization, electrical conductors and i	nsula	ators						
Current: electric current: electric circuits: direction of current flow: electrical resistan	ce: v	oltage	e.					
drops: voltage rise: relationship among current, voltage, and power: Ohm's law: resis	tors	and th	eir					
series and parallel combinations.								
Household Magnets: earth as a magnet, magnetic pole, magnetostatic forces. Coulor	b's l	law fo	or					
magnetism, ferromagnetism, magnetic polarization, magnetic domains, magnetic mat	erial	S.	-					
magnetic fields magnetic flux relationship between electric and magnetic fields	oriur	.,						
Electric power distribution: direct and alternating currents superconductivity transfo	rmer	S						
induction magnetic field energy relationship between changing magnetic fields and	elect	ric						
fields. Lenz's law, inductors, induced emf, electrical safety, generators, motors	01000							
(Explanation is to be done with related experiments)								
Module 5: Light		10 ho	urs					
Reflection and refraction index of refraction dispersion and interference in electron	าลงท	etic						
waves	lugn	oue						
Cameras: eve and camera refracting ontics converging lenses real images focus for	al le	noths	f-					
numbers the lens equation diverging lenses virtual images light sensors vision and	visi	nguis n	, 1					
correction different types of defects in human eve	V151	511						
I EDs and Lasers ontical fibres metals insulators and semiconductors: photoconduc	tors	n_n						
iunction diodes: light-emitting diodes: incoherent and	1015	, р п						
coherent light: spontaneous and stimulated emission: population inversion: laser amp	lifics	ation a	and					
oscillation: laser safety ontical fibre: structure and light propagation								
(Explanation is to be done with related experiments)								
Total Lecture hours		60 ha	ours					
Text Book(s)		00 110	, , , , , , , , , , , , , , , , , , , 					
1. Physics in our daily lives. Umme Ammara, gurucool publishing								
2 The Physics of Everyday Things James KaKalios RH IIS(2017)								
The r hysics of Everyday rinings, James Raranos, Rif 05(2017)								
3. Physics in Everyday Life, Shaswant Goswami, Vedang Sati, (2016)								
4. How Things Work The Physics of Everyday Life, Louis A. Bloor	nfiel	d, W	'iley					
publishing(WileyPLUS)								
Reference Books	•							
¹ Feynmann Lectures on Physics, Matthew Sands, Richard Feynmann and Ro	bert							
B.Leighton Vol I, Vol II, Vol III.		~						
Storm in a Teacup: The Physics of Everyday Life, Helen Czerski, Publisher l	Blac	k Swa	n					
	т	D	ſ					
Atmospheric Physics	1 0	r A						
Uninol) 4 Dra requisitat Daria Division	U	U	4					
rre-requisite: Dasic Physics								
Course Objectives:								

1. To provide fundamental knowledge regarding the earth's atm	nosphere
2. To give an in-depth introduction of atmospheric thermodynamic	mics
3. To introduce atmospheric aerosols and analyse its impact on	the global climate
4. To introduce students to different methods of atmospheric ob	oservation
Course Outcome:	
After successful completion of the course, the students will be able to	0
CO1: understand the fundamentals of the earth's atmosphere and its	thermodynamics, aerosols and
cloud	•
CO_{2} remember the laws involving thermodynamics scattering and	dissination mechanism
CO_3 : analyse atmospheric observations	dissipation meenansin.
CO(4) analyse atmospheric observations	
CO 4: apply the knowledge gained to make atmospheric observation	IS.
Module 1: INTRODUCTION TO EARTH'S ATMOSPHERE	14 hours
State of the earth's atmosphere: main constituents of dry air, CO2,	ozone, water vapour, aerosols;
vertical thermal structure of the atmosphere : troposphere, stratosphere	ere, mesosphere, thermosphere
and exosphere; environmental lapse rate, hydrostatic equilibrium, hy	drostatic equation
Module 2: ATMOSPHERIC THERMODYNAMICS	18 hours
Gas Laws, Ideal Gas Law, Dalton's Law, First Law of Thermodynam	nics, equivalence between heat
and work, thermal capabilities, isothermal, isochoric, isobai	ric transformation, adiabatic
transformation, Poisson relation, thermodynamic properties of	water, latent heat, Clausius
Clapeyron's relation, Approximation and consequences of Clausius	s-Clapeyron relation, moist air
mean molecular weight of dry and moist air.	
	1 1 1
Module 3:AEKOSOL AND CLOUD	14 hours
Classification of atmospheric aerosol, production and removal mecha	14 hours anisms, concentration and size
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc	anisms, concentration and size attering and Mie scattering,
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law	14 hours anisms, concentration and size cattering and Mie scattering,
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate.
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons,
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde.	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons,
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons, s of LIDAR, SONAR, Water
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observatio and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate, 14 hours onal procedures, conventional r measurements: pilot balloons, s of LIDAR, SONAR, Water applications in the observation
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters.	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons, s of LIDAR, SONAR, Water applications in the observation
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate. in the observation s of LIDAR, SONAR, Water applications in the observation 60 hours
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observatio and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours Text Book(s)	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons, s of LIDAR, SONAR, Water applications in the observation 60 hours
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours Text Book(s) 1. Physics of the Atmosphere and Climate – Murray L. Salby, Car	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons s of LIDAR, SONAR, Water applications in the observation 60 hours mbridge University Press Imbridge University Press
Module 3:AEROSOL AND CLOUDClassification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert LawMacro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONSGeneral principles of meteorological measurements and observativa and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde.Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters.Total Lecture hoursText Book(s)1.Physics of the Atmosphere and Climate – Murray L. Salby, Car Introduction to Atmospheric Physics – D.G. Andrews, Cambrid	14 hours anisms, concentration and size attering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate. in the observation s of LIDAR, SONAR, Water applications in the observation 60 hours mbridge University Press lge University Press
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth an mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours Text Book(s) 1. Physics of the Atmosphere and Climate – Murray L. Salby, Car Introduction to Atmospheric Physics – D.G. Andrews, Cambrid Reference Books	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate. 14 hours onal procedures, conventional r measurements: pilot balloons s of LIDAR, SONAR, Water applications in the observation 60 hours mbridge University Press lge University Press
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth an mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observation and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours 1. Physics of the Atmosphere and Climate – Murray L. Salby, Car 2. Introduction to Atmospheric Physics – D.G. Andrews, Cambrid Reference Books 1. 1. An Introduction to Dynamic Meteorology- Vol. 1., James R. Ho	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate. onal procedures, conventional r measurements: pilot balloons s of LIDAR, SONAR, Water applications in the observation 60 hours mbridge University Press olton. To John W. H. A. A.
Classification of atmospheric aerosol, production and removal mecha distribution, adsorption and scattering of solar radiation, Rayleigh sc Beer-Bouguer-Lambert Law Macro and microphysical characteristics of cloud: droplet growth and mechanism, radiative transfer in cloudy atmosphere, role of aerosol a Module 4: ATMOSPHERIC OBSERVATIONS General principles of meteorological measurements and observatio and self recording measurements of atmospheric variables, upper air radiosonde, ozonesonde, GPS sonde. Surface based remote sensing: working principle and applications RADAR, radiological satellites, multiscanner radio-meters and their of weather parameters. Total Lecture hours Text Book(s) 1. Physics of the Atmosphere and Climate – Murray L. Salby, Car 2. Introduction to Atmospheric Physics – D.G. Andrews, Cambrid Reference Books 1. 1. An Introduction to Dynamic Meteorology- Vol. 1., James R. Ho 2. Remote Sensing of Aerosols, Clouds and Precipitation –	14 hours anisms, concentration and size cattering and Mie scattering, d cloud dissipation and cloud in climate. 14 hours onal cloud in climate, neasurements: pilot balloons, s of LIDAR, SONAR, Water applications in the observation 60 hours mbridge University Press olton. – T. Islam, Y. Hu, A. A

MDC Physics of the Forth		L	Т	P	С	
MDC	r nysics of the Earth		0	0	3	
Pre-requisite: Basic Physics						
Course Objectives:						
1. To pro	1. To provide fundamental knowledge regarding the earth and the universe					
2. To giv	ve an in-depth introduction structure of the earth and its component	ts				

 3. To introduce dynamical processes related to solid earth, hydrosphere, atmosphere and biosphere 4. To make students aware of different factors disturbing the earth's ecosystem Course Outcome: After successful completion of the course, the students will be able to
4. To make students aware of different factors disturbing the earth's ecosystem Course Outcome: After successful completion of the course, the students will be able to
Course Outcome:
After successful completion of the course, the students will be able to
LATEL SUCCESSION CONDIENCED OF THE COURSE. THE SUCCED SWITCHE ADJE TO
CO1: understand the fundamentals of planet earth its structure, the dynamical processes involved
and the factore disturbing its stability
and the factors disturbing its stability. $CO(2)$ remember we show that the structure earth and the universe.
CO 2: remember various aspects of the structure earth and the universe
co s: analyse the origin of the universe and planet earth, its magnetic field, ocean
CO 4: evaluate the dynamical processes and factors disturbing the stability of the earth
Module 1. THE FARTH AND THE UNIVERSE
Origin of universe creation of elements and earth A holistic understanding of our dynamic plan
through Astronomy Geology Meteorology and Oceanography
General characteristics and origin of the universe the Big Bang Theory Age of the universe and
Hubble constant formation of galaxies earth's orbit and spin. Asteroids: origin types and
examples, meteorites and asteroids, earth in the solar system, origin, size, shape, mass, density
rotational and revolution parameters and its age.
Module 2: STRUCTURE 11 hours
The Solid Earth: Mass, dimensions, shape and topography, internal structure, magnetic field
geothermal energy
The Hydrosphere: The oceans, their extent, depth, volume, chemical composition, river systems
The Atmosphere: Layers, variation of temperature with altitude, variation of density and pressure
with altitude aloud formation
with antique, cloud formation
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSES15 hours
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the magnetic field.
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of the earth introduct
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.
With altitude, cloud formationThe Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSES15 hoursThe Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis
The Atmosphere: Atmosphere: Atmosphere: under state
The Atmosphere: Atmosphere: Atmosphere: water cycle, carbon cycle Module 4: DISTURPENCE THE FAPTH
With altitude, croud formationThe Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSES15 hoursThe Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.15 hoursHydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamisThe Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle7 hoursModule 4: DISTURBING THE EARTH7 hours
The Atmosphere: Atmosphere: Atmosphere: water cycle, carbon cycle 15 hours The Atmosphere: Atmosphere: Atmosphere: water cycle, carbon cycle 7 hours The Atmosphere: Atmosphere: water cycle, carbon cycle 7 hours
With altitude, cloud formationThe Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSESThe Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamisThe Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycleModule 4: DISTURBING THE EARTH7 hoursContemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: adapted affuncts and pollution (c) Rightsphere: biodiversity lose deformation
With antitude, cloud formationThe Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSES15 hoursThe Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamisThe Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle7 hoursModule 4: DISTURBING THE EARTH7 hoursContemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of accesstems
With antitude, cloud formation The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse gate missions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems. Total Lecture hours 45 hours
With attitude, cloud formationThe Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost.Module 3: DYNAMICAL PROCESSES15 hoursThe Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of th earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones.Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamisThe Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature and greenhouse effect Biosphere: water cycle, carbon cycleModule 4: DISTURBING THE EARTH7 hoursContemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems.45 hourText Book(s)Text Book(s)45 hour
With antidue, cloud formation The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems. Total Lecture hours 45 hour Lext Book(s) 45 hour
With altitude, cloud formation The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of th earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems. Total Lecture hours 45 hour 1. Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emilian
Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of th earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature ar greenhouse effect Biosphere: water cycle, carbon cycle 7 hours Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse ga emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems. 45 hour Text Book(s) 1. Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emilian 1992, Cambridge University Press. 1992
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse greenhouse and fragility of ecosystems. 45 hour Total Lecture hours 45 hour 1. Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emilian 1992, Cambridge University Press. Reference Books Text
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. 15 hours Module 3: DVNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature ar greenhouse effect Biosphere: water cycle, carbon cycle 7 hours Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse greenhouse and fragility of ecosystems. 45 hour Total Lecture hours 45 hour 1. Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press. 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emilian 1992, Cambridge University Press. 3. The Blue Planet : An Introduction to Earth System Science, Brian J. Skimnner, Stephen Comparison of the Earth System Science, Brian J. Skimnner, Stephen Comparison of the Earth System Science, Brian J. Skimnner, Stephen Comparison of the Earth System Science, Brian J. Skimnner, Stephen Comparison of the Earth System Science, Brian J. Skimnner, Stephen Comparison of the Earth System Science, Brian J. Skimnner, Ste
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. 15 hours Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle 7 hours Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse gemissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation Robustness and fragility of ecosystems. 45 hour Total Lecture hours 45 hour 1. Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emilian 1992, Cambridge University Press. 1. Reference Books 1. The Blue Planet : An Introduction to Earth System Science, Brian J. Skimnner, Stephen Original Portere, 1994, John Wiley & Sons
The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. 15 hours Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movement Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tide tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature an greenhouse effect Biosphere: water cycle, carbon cycle 7 hours Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse gemissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation (c) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation (c) Hydrosphere: biodiversity

SEMESTER-III

DSC Mathematical Physics I		L	Т	Р	С				
(M	(Major+Minor)				2	4			
Pre-requisite: Basic Physics and Mathematics									
Course Objectives:									
	1. To provide the fundamental knowledge of calculus and differential equations.								
	2. To enable students to learn different properties vectors and their differentiation and								
	integration.								
	3. To make students familiar with orthogonal curvilinear coordinates.								
	4. To introduce the dirac delta function and its properties.								
Cou	Course Outcome:								
Afte	er successful co	mpletion of the course, the students will be able to							
CO	1: Understand th	he fundamentals of calculus, vector differentiation and vector in	itegra	tion.					
CO	2: Apply the kr	nowledge of Calculus to solve simple problems.							
CO	3: Remember e	expressions of gradient, divergence and curl in orthogonal curvi	linear	coor	dinat	es.			
CO	4. understand t	he properties of Dirac Delta function							
Mo	dule 1. CALCI			14	5 hou	irc			
Rec	anitulation: Dif	ferentiation plotting of functions intuitive ideas of continuou	s diff	erent	iable	etc			
fund	tions and plotti	ing of curves. Approximation: Taylor and Binomial series (state	s, um ment	s only	$\frac{10010}{10}$	cic.			
Firs	t Order and Sec	cond Order differential equations: First Order differential equations	ions a	nd In	y) Iteora	tino			
fact	or Homogeneo	us equations with constant coefficients. Wronskian and general	solut	ion	liegiu	ung			
Cal	culus of function	ons of more than one variable: Partial derivatives, exact and i	nexac	t diff	erent	ials.			
Inte	grating factor.	with simple examples.							
Mo	Module 2: VECTOR CALCULUS 18 hours								
Prop	perties of vector	rs, Scalar product and vector product, scalar triple product and	l their	inter	preta	tion			
in te	erms of area and	l volume, respectively. Scalar and vector fields.							
Vec	tor differentiati	on: Directional derivatives and normal derivatives. Gradient	of a se	calar	field	and			
its g	geometrical inte	erpretation. Divergence and curl of a vector field. Del and I	Laplac	cian c	operat	tors,			
vect	or identities.								
Vec	tor Integration:	Ordinary integrals of vectors. Multiple integrals, Jacobian, no	tion o	f infi	nitesi	mal			
line	, surface and v	volume elements. Line, surface and volume integrals of vect	or fie	elds,	flux	of a			
vect	or field. Gauss	' Divergence Theorem, Green's and Stokes Theorems and th	eir ap	plica	tions	(no			
rigo	rous proofs)								
Mo	dule 3:ORTH	DGONAL CURVILINEAR COORDINATES			7 hou	rs			
Orth	nogonal curvilir	near coordinates. Derivation of gradient, divergence, curl and L	aplaci	ian in					
Car	tesian, spherica	l and cylindrical coordinate systems.							
Mo	dule 4: DIRAC	C DELTA FUNCTION AND ITS PROPERTIES	<u> </u>		5 hou	rs			
Def	inition of Dirac	e delta function. Representation as a limit of a Gaussian funct	ion a	nd re	ctang	ular			
func	tion. Properties	s of Dirac delta function.							
Tot	al Lecture hou	rs		4	15 ho	urs			
1 ex	T BOOK(S)	MALL CONTRACTOR ALC NEWS PERCE	001		h				
1.	Flaguing	Methods for Physicists, G.B. Arkten, H.J. Weber, F.E, Harri	s, 201	13, 7	edit	lion,			
2	Lisevier	on to Ordinary Differential Equations E.A. Coddinator 2000	DLUO	Las					
Z.	An introductio	on to Ordinary Differential Equations, E.A. Coddington, 2009,	гпіU	Lear	mng.				
	Mothematical	Tools for Dhusias Lamas Nearning 2010 Dover Dublications							
1. 2	Mathematical	10018 101 Flysics, Lattices Inearfilling, 2010, Dover Fublications Methods for Scientists and Engineers, S.S. McOuerrie, 2002, M	live T						
∠.	wamematical	memous for scientists and Engineers, S.S. MicQuarfie, 2005, V	i iva E	DOOK					

Laboratory in Mathematical Physics-I

Prerequisite : Basic Computer Skills

Course Objective :

- 1) Makes students gain a broad perspective about the uses of computers in engineering industry. .
- 2) Develops basic understanding of computers, the concept of algorithm and algorithmic thinking.
- 3) An ability to incorporate exception handling in object-oriented programs.
- 4) Develops the use of the C programming language to implement various algorithms, and develops the basic concepts and terminology of programming in general

Course Outcome:

- CO1: Get the basic knowledge in fundamentals of programming, algorithms and programming technologies and fundamentals of Computer Science.
- CO2: The course will help to give a basic idea how to Control the sequence of the program and give logical outputs
- CO3: Construct programs involving decision structures and loops
- CO4: Get concept of Strings for writing programs related to character array.

List of Experiments :

- 1) Development of programs using multiple arithmetic and logical operators. Programs for addition, subtraction, multiplication etc.
- 2) Programs using simple control statements such as if else, while, do while etc. Making a program for a calculator for example. Extracting the digits of an integer, reversing digits, finding sum of digits etc.
- 3) Programs using For loop, switch statement etc. eg. Finding average of numbers, multiplication of numbers etc. Checking for primes, generation of Armstrong numbers.
- 4) Generation of the Fibonacci sequence, finding the square root of a number, calculation of factorials, printing various patterns using for loop.
- 5) Programs using Arrays: declaring and initializing arrays. Program to do simple operations with arrays. Strings inputting and outputting strings. Using string functions such as strcat, strlen etc. Writing simple programs for strings without using string functions.

Total Lab Hours :

30 Hours

Text Books :

1) PROGRAMMING IN ANSI C BY E. BALGURUSWAMY, TATA MC-GRAW HILL 2) PROGRAMMING WITH C, SCHAUM SERIES

DSC	Emorta Saionas	L	Т	Р	С		
(minor)	Sports Science		0	0	4		
Pre-requisite: Preliminary concept of Science and Mathematics							
Course Objectives:							
(1)To enhance the fundamental knowledge of dynamics which is helpful to understand the field of sports							
like shooting, discuss throw etc.							
(2) To develop the	basic idea on gravitation to understand climbing, scating, swimming	ng eto	c.				
(3)To have an outle	ook on food and nutrition of our body.						
(4)To enhance the	basics of kinesiology, biomechanics and sports.						
(5)To be aware of	mental and physical health for a positive lifestyle.						
	- · · · ·						

Course Outcome:	
After successful completion of the course, the students will be able	
CO1: to understand the basics of dynamics required for understanding physics behind	d sports
CO 2: to learn the conservation laws to relate with practical field of sports.	a sports
CO 3: to understand the importance of food and nutrition for good health	
CO 4: to understand kinesiology biomechanics and sports	
CO 5: to learn about physical fitness and positive lifestyle	
CO 5. to learn about physical nuless and positive mestyle.	
Module 1: Dynamics	15 hours
Measurement: Physical quantities, Standards and Units, International system of Units,	
Standards of time, length and mass, Precision and significant figures	
Newton's laws of motion: Newton's first law. Force, mass. Newton's second law. Newton	on's
third law, Mass and weight. Applications of Newton's laws.	
Projectile motion: Shooting a falling target, Physics behind Shooting, Javelin throw and	Į į
Discus throw.	
Module 2: Gravitation	10 hours
Conservation laws: Conservation of linear momentum, collisions - elastic and inelastic.	
Angular momentum. (Physics behind Carom, Billiards, Racing)	
Centre of mass: Physics behind Cycling, Rock climbing, Skating	
Gravitation: Origin, Newton's law of gravitation, Archimedes's principle, Buoyancy &	
Physics behind swimming	
Module 3: Health	10 hours
Food and Nutrition: Proteins, Vitamins, Fat, Blood pressure. Problems due to the deficit	ency of vitamins.
Energy: Different forms of Energy, Conservation of mass-energy	
Physical exercises: Walking, Jogging and Running, Weight management	
Module 4: Kinesiology, Biomechanics & Sports	15 hours
Meaning & Importance of Kinesiology & Biomechanics in Physical Education & Sports	,
Newton's Law of Motion & its application in sports, example of Friction and its effects i	n Sports, examples,
Effect of exercise on the functioning of Various Body Systems. (Circulatory System, Res	spiratory System,
Neuro-Muscular System etc)	
Module 5: Physical Fitness, Wellness & Lifestyle	10 hours
Components of Physical fitness, Components of Health related fitness, Components of	wellness
Preventing Health Threats through Lifestyle Change, Concept of Positive Lifestyle, Intro	oduction to Yoga,
mental and physical benefits of yoga.	-
Total Lecture hours	60 hours
Text Book(s)	
1. Yakov Perelman. Physics for Entertainment. Createspace Independent Pub, 20	10.
2 Yakov Perelman. Physics Everywhere. Prodinnova Publishers, 2014.	
3. Vassilios McInnes Spathopoulos. An Introduction to the Physics of Sports. Cre	eatespace
Independent Publishing Platform, 2013.	
4. Swaminathan M. Handbook of Food and Nutrition. Bangalore Press. 2012.	
Reference Books	
1. Walter Lewin.	
2. For the Love of Physics. Taxmann Publications Pvt. Ltd., 2012.	
· Srilakshmi B. Food Science. New Age International Pub. 2015.	

MDC Indian Contribution to Science		L	Т	Р	С			
		3	0	0	3			
Pre-requisite: Preliminary concept of Science and Mathematics.								
Course Objectives:								
1. To enhance the l	knowledge of Indian science from ancient to modern							

2 To day	valor interest on ancient discoveries					
2. 10 de	verop interest on ancient discoveries.					
5. To identify ancient rituals and relations with modern methods.						
4. 10 ga	ther knowledge about the Nobel Lauretes of Indian origin.					
S. 10 em	nance the knowledge of the lives of indian scientists.					
Course	Juccome:					
After su	ccessful completion of the course, the students will be able					
CO1: to	learn the development of science from ancient to modern India.					
CO 2: to	elearn different fields of science originated in ancient India					
CO 3: to learn the traditional Indian customs and rituals, its relation to science, its effect.						
CO 4: to know about Nobel Laureates of Indian origin.						
CO 5: to	how about the life of few scientists of India.					
Module	1: India's Contribution to Science and Technology (from Ancient to Modern)	10 hours				
Proindep	bendence: Water management, Iron and Steel, Farming Techniques and Fertilisers,					
Physics,	Medicine and Surgery, Post Independence: Atomic Energy, Space, Electronics and					
Informat	ion Technology, Oceanography, Biotechnology, Council of Scientific and					
Industria	ll Research, The beginning of Indian Astronomy, Chemistry in Early Literature,					
Medicina	al Tradition in Ancient India					
Module	2: Science in Ancient India	8 hours				
Differer	nt studies on plants and animals, Biodiversity and folk traditions, Mathematics in					
India by	early Indian astronomers, early historical period, classical period, Metallurgy in					
India						
Module	3: Indian Traditional Knowledge	7 hours				
About n	ature, flora and fauna, Sacred groves, wildlife, Bishnois and conservation, Ayurveda	, elements				
of nature	e, ways of treatment, medical instruments in ancient India, yoga, traditional knowledg	e in				
relation	to science, customs and beliefs in different parts of India, positive and negative side,	-				
Module	4: Nobel Laureates of Indian Origin	8 hours				
Sir Ron	ald Ross, Sir C.V Raman, Subrahmanyan Chandrasekhar, Har Govind Khorana, Venk	kataraman				
Ramakri	snan, their contributions.					
Module	5: Lives of few Scientists and their contributions	12 hours				
Sushruta	a, Bhaskara II, Aryabhatta, Jagadish Chandra Bose, Acharya Prafulla Chandra Roy, I	Birbal				
Sahni, P	C Mahalanobis, Meghnad Saha, Satyendra Nath Bose, Srinivas Ramanujam, Salim					
Ali,,Pan	chanan Maheshwari, B.P Pal, Homi Jehangir Bhaba, Kalpana Chawla, Sunita William	ns, Smt				
Anna Ma	ani, E.K Janaki Ammal					
Total Le	cture hours	45 hours				
Text Boo		1				
1.	A Short History of Science and Technology In India, Dr Sanjay Sen, Mahabeer Pub 2019	lications,				
2.	Doctors, Scientists, & Engineers of Ancient India, S, Narain, Kalpaz Publications, 20	17				
3.	From the Beginning of Time: Modern Science and the Puranic Univers Swaminathan, 2020	e, Ganesh				
Reference	ce Books					
1.	India's Glorius Scientific Tradition, Suresh Soni, Prabhat Prakashan, 2020					
2.	The Unknown, Chiranit Majumdar, Notion Press Media Pvt Ltd, 2022					
3.	Lilavati's Daughters: The Women Scientists of India, Edited by Rohini Godbole	and Ram				
	Ramaswamy, Published by Indian Academy of Sciences, ISBN 978-81-8465-00	5-1				

SEMESTER IV

ngr	٦
DOU	/

MECHANICS AND PROPERTIES OF MATTER

L	Т	Р	С
4	0	0	4

Pre-requisite: 12th standard Physics course

Course Objective

(1) aims to understand the concepts of fundamentals of dynamics.

(2) to be familiar with rotational motion and different parameters related to it to understand the concepts behind it.

(3) enhance the knowledge on gravitation and its related areas by understanding laws and theory behind pendulum.

(4) to have a broader perspective about the flow of liquids in viscous medium and capillary tubes.

(5) to enhance the knowledge of elasticity by understanding relations of elastic constants and bending of beams.

Course Outcome:

After successful completion of the course, the students will be able

CO1: to remember different laws which govern the dynamics of a system: a particle, system of particles, planetary motion and fluids.

CO 2: to understand the concepts of fundamentals of dynamics, flow of liquids and elasticity.

CO 3: to apply the concepts of mechanics in different systems.

CO 4: to evaluate the values of different parameters of various physical systems.

CO 5: to differentiate the physical systems by theoretical analysis.

Module 1: Fundamentals of Dynamics

24 hours

Reference frames, Reviews of Newton's laws, Inertial and non inertial frames, Rotating frame, Coriolis force, centripetal and centrifugal force, Other effects and applications of centrifugal force, Projectile motion, horizontal range, maximum height attained by a projectile, Dynamics of a system of particles, centre of mass

Galilean transformation equations, Galilean invariance, Lorentz transformation equations, length contraction, time dilation, transformation of velocity.

Uniform circular motion, angular velocity, angular acceleration, couple, work done by a couple, angular momentum, principle of conservation of angular momentum, rotation about a fixed axis, moment of inertia, kinetic energy of rotation, general theorems on moment of inertia, calculation of moment of inertia for rectangular, spherical and cylindrical bodies about different axes.

Module 2: Gravitation

12 hours

12 hours

Newton's laws on gravitation, motion of a particle in central force field(motion in a plane, angular momentum is conserved, areal velocity is constant), Kepler's laws(only statement) The simple pendulum accompound pendulum interchangeshility of the centres of suspension and

The simple pendulum, compound pendulum, interchangeability of the centres of suspension and oscillation, Kater's reversible pendulum.

Satellite in circular orbit and applications, Geosynchronous orbits, basic idea of global positioning system (GPS), weightlessness, physiological effects on astronauts.

Module 3: Liquids12 hoursRate of flow of liquid, Bernoulli's equation, Applications of Bernoulli's equation, Viscosity,

Poiseulle's equation, critical velocity, motion of a body in viscous medium, Stoke's law. Molecular force, molecular range, sphere of influence, surface tension, surface film and surface energy, excess pressure inside a liquid drop, rise of liquid in capillary tubes, angle of contact.

Module 4: Elasticity

Elasticity, Stress and strain, equivalence of a shear to a compression and an extension at right angles to each other, Hooke's law, Different elastic constants, Strain energy per unit volume for different strains, Poisson's ratio, its limit, relation between different elastic constants, twisting couple on a cylinder

Bending of beams, bending moment, cantilever, -loaded at free end, loaded at the middle for different shapes.

Tota	al Lecture hours	60	hours
Tex	t Book(s)		
1.	Mechanics, D.S Mathur, S.Chand and Company Limited, 2000.		
2.	Physics, Resnick, Halliday and Walker 8/e.2008, Wiley.		
3.	Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, TataMcGraw-Hill.		
4.	Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.		
Ref	erence Books		
1.	Analytical Mechanics, G.R. Fowles and G.L. Classiday.2005, Cengage Learning	g.	
2.	Theoretical Mechanics, M. R. Spiegel, 2006, Tata McGraw Hill.	-	
3.	Physics for Scientists and Engineers with Modern Phys., J.W. Jewett, R.A.Ser	way	, 2010,
	Cengage Learning.	-	

DSC	FI FCTRICITY AND MACNETISM	L	Τ	P	С		
DBC	ELECTRICITI AND MAGNETISM	4	0	0	4		
Pre-requisite: 12 th standard Physics course							

Course Objective

(1) aims to enhance the concepts of electrostatics in finding out the electric intensity and electric potential in different charge distributions.

(2) to be familiar with the dielectric properties of matter by understanding the concepts of different parameters.

(3) enhance the knowledge the electromagnetic field to familiar with the concepts of different instruments.

(4) to have a broader perspective about magnetic materials by understanding the theory of different theories.

(5) to enhance the knowledge of circuits, both DC and AC.

Course Outcome:

After successful completion of the course, the students will be able

CO1: to remember different laws associated with electrostatics, magnetostatics, electromagnetic induction and dielectrics.

CO2: to understand the theories related to charge distributions, magnetic and electromagnetic behavior of various substances.

CO3: to apply the concepts of electrostatics, dielectrics and electromagnetic to different systems: charged conductors, motors, molecules, transformers etc.

CO4: to evaluate various parameters associated with charge distributions, magnetic substances, dielectrics and others viz, various instruments.

CO5: to identify the different behaviors associated with various types of substances by theoretical and experimental analysis.

theoretical and experimental analysis.				
Module 1: Electric Field and Electric Potential	12 hours			
Electric field and its conservative nature, electric intensity and electric potential, Poisson's	and Laplace			
equations, Gauss's law, applications to charge distributions with spherical, cylindrica	l and planar			
symmetry, Mechanical force experienced by unit area of a charged surface, electric intensity and po				
lue to an electric dipole, capacitance of a system of charged conductors, parallel plate capacito				
cylindrical capacitor, method of images and application to: (1) plane infinite sheet and				
(2) sphere.				
Madula 2. Dialactria Proportias of Matter	12 hours			

Module 2: Dielectric Properties of Matter

Die	lectric polarization, dielectric constant and displacement vector, external field of a dielectric				
med	nedium, the electric field in a material medium, Gauss's theorem in dielectric, electric susceptibility				
and	dielectric constant, dielectric loss, applications of dielectric material, point charge in a dielectric				
flui	d, The Claussius-Mossotti relation, Polar molecules: The Langevin Debye Formula				
Mo	dule 3: Electromagnetic Induction and Electrical Circuits24 hours				
Fara	aday's laws on electromagnetic induction, Lenz's law, Self induction, mutual induction, unit				
of i	nductance, energy stored in an inductor, motional emf, eddy current, AC generator, DC				
gen	erator, DC motor, Induction motor, Transformer, energy loss, Determination of self and				
mut	ual inductance				
Heli	nholtz equation of growth and decay of current in L-R circuit, charging of a condenser, discharging of				
a co	ndenser through an inductor, charging of a capacitor through L & R, discharge of a capacitor through				
L &	R, AC circuits, operator J, AC circuit containing inductance, AC circuit containing Resistance and				
Indu	ictance, AC circuit containing Resistance and capacitance, AC circuit containing Resistance,				
Indu	ictance and Capacitance(series resonance circuit and parallel resonant circuit), Power in an AC circuit				
Module 4: Magnetostatics and Electromagnetic Theory 12 hours					
Biot-Savart's law and its applications, Magnetic materials, definitions of different parameters,					
diar	nagnetic, paramagnetic and ferromagnetic substances, ferromagnetic domains, hysteresis				
curv	ve, hysteresis loss, calculation from area of hysteresis loop, soft and hard magnetic				
sub	stances, Langevin theory of diamagnetism, Langevin theory of paramagnetism, Weiss's				
theo	bry of ferromagnetism, Ampere's law, equation of continuity, Inconsistency of Ampere's law,				
Max	xwell's modifications of Ampere's law, Displacement current, Maxwell's equations, Physical				
sigr	ificance.				
Tot	al Lecture hours 60 hours				
Tex	t Book(s)				
1.	Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw.				
2	Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education				
2. 3	Introduction to Electrodynamics, D.J.Griffiths, 3 rd Edn., 1998, Benjamin Cummings,				
3. 4	Elements of Electromagnetics, M.N.O. Sadiku, 2010. Oxford University Press.				
Ref	erence Books				
1.	Electricity and Magnetism, J.H. Fewkes & J. Yarwood, Vol. I. 1991, Oxfor Univ. Press				
2.	Feynman Lectures Vol. 2. R.P. Feynman, R.B. Leighton, M. Sands, 2008. Pearson				
3.	Education.				
1	Electricity and Magnetism, D C Taval, 1988, Himalayan Publishing House.				

		L	Т	Р	С	
DSC	Mechanics and Properties of Matter - Lab	0	0	4	2	
Prerequisite : F	asics of 12 standard Physics lab					
Course Objecti	ve :					
 The Objective theoretical studie To develop the 3) Understandin on learning The laborator 	e of this course is to make the students gain practical knowledg es. le Experimental and Analytical Skills. g of basic physics concepts through direct observation of emp y will help students understand the role of direct observation in	e to co-r irical ev	relate v vidence	with th	nenands	
Course Outcom	ne:					
 CO1: Learning basic concept of measuring apparatus and gravity of earth by using Kater's pendulum and Bar pendulum CO2: Get the knowledge of moment of inertia of a body. CO3: To enhance the knowledge of elasticity and viscosity of materials and liquids. CO4: The course will help to understand the stress and strain of a materials List of Experiments : 						
1) To deter	mine the Modulus of Rigidity of a Wire by Maxwell's needle.					
2) To deter	mine the value of g using Bar Pendulum.					
3) To find t	he value of g by using Kater's pendulum					
4) To find t	he moment of inertia of an unknown body by using moment of in	ertia tał	ole.			
5) 5) To stu	dy the Motion of Spring and calculate (a) Spring constant, (b) g a	nd (c)M	odulus	s of		
rigidity.						
6) To deter	mine the Moment of Inertia of a Flywheel.					
7) To deter	mine Coefficient of Viscosity of water by Capillary Flow Method					
(Poiseuille'	s method).					
8) To deter	mine the elastic Constants of a wire by Searle's method					
9) To deter	mine the Young's Modulus of a Wire by Optical Lever Method.					
10) Determ	ination of the rigidity modulus of the material of a wire by Static	al Metho	od.			
Total Lab Hou	rs :		60) Hour	S	
Text Books :		I				
1. Mechanics, D.S.	Mathur, S.Chand and Company Limited, 2000.					
2. Physics, Resnick, Halliday and Walker 8/e.2008, Wiley.						
3. Mechanics, Ber	rkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, TataMcGraw-	Hill.				

4. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.

Reference Books:

- 1. Analytical Mechanics, G.R. Fowles and G.L. Classiday.2005, Cengage Learning.

 Theoretical Mechanics, M. R. Spiegel, 2006, Tata McGraw Hill.
 Physics for Scientists and Engineers with Modern Phys., J.W. Jewett, R.A.Serway, 2010, Cengage Learning.

DSC	Electricity and Magnetism Lab	L	T	P	C
Droroquisito : Ro	sigs of 12 standard Physics lab	U	U	4	2
Course Objective					
Course Objective	•				
1) The students w	vill have a good foundation in the fundamentals related to the	expei	imer	ts in	cluded in
this course an	d their advanced applications.	-			
2) The students w	vill get motivated to develop small experiments related to these	tech	nique	s and	l develop
3) Understanding	of basic physics concepts through direct observation of empiri	cal e	viden	ce ar	nd hands-
on learning	or basic physics concepts unough uncer observation of empiri	care	viuen		iu nanus-
Course Outcome					
CO1: Learning b	pasic concept of measuring meter bridge, potentiometer and reso	onanc	e cir	cuit.	
CO2: Get the kno	wledge of earth's magnetic field and meter bridge.				
CO3: To enhance	e the knowledge of post office box and tangent galvanometer.				
CO4: The course	will help to understand the potential difference concept by usir	ig po	tentio	omete	er.
List of Experime					
1) To find the	value of horizontal components of earth's magnetic field by using	g mag	gneto	mete	r.
2) Compare t	he value of two low resistance by using drop of potential method	using	g a m	eter ł	oridge
3) Determina	tion of ratio of two low resistance using Potentiometer.				
4) Determina	tion of Resistance of a Galvanometer using Post Office Box.				
5) To determi	ne the horizontal component (B_H) of the earth's field by using Ta	ngent	: Galv	anon	neter.
6) Determina	tion of specific resistance of the material of a wire by meter bridg	e			
7) Measure th	e average resistance per unit length of a meter bridge wire by Ca	rey-F	oster	met	nod
8) Measured	he EMF of a cell by using potentiometer.				
9) Measured	he current flowing in a circuit by using potentiometer				
10) To draw th	e resonance curve of a series LCR circuit and hence determine th	Q-fac	ctor.		
Total Hours:		6) hou	rs	
Textbooks:					
1) A TEXT BO	OK ON PRACTICAL PHYSICS: K. G. MAZUMDAR & B.GHOSH				
2) A TEXT BO	OK ON PRACTICAL PHYSICS: Dr. SAMIR KUMAR GHOSH				

Pre-requisite: Quantum Mechanics and Electricity and Magnetism. Course Objectives: 1. To impart a comprehensive course on the operating principles – stimulated emission and population inversion, spectral properties and types of lasers. 2. To disseminate lectures on the applications of lasers in industrial, biomedical and research and development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applic	DSE I	Lasers and Nonlinear Optics	L	T	P	C 4			
Course Objectives: 1. To impart a comprehensive course on the operating principles – stimulated emission and population inversion, spectral properties and types of lasers. 2. To disseminate lectures on the applications of lasers in industrial, biomedical and research and development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. Module 1: Basics, Operating Principles and Types of Lasers Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications. Overview o	Pre-requisite: Oua	ntum Mechanics and Electricity and Magnetism.	-	U	U	-			
1. To impart a comprehensive course on the operating principles – stimulated emission and population inversion, spectral properties and types of lasers. 2. To disseminate lectures on the applications of lasers in industrial, biomedical and research and development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers – Ruby, Helium-Neon and Laser Cooling, Biomedical Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling	Course Objectives:								
inversion, spectral properties and types of lasers. Control of the term of the sectors of the applications of lasers in industrial, biomedical and research and development sectors. 2. To disseminate lectures on the applications of lasers in industrial, biomedical and research and development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Types of Lasers CO 4: to understand the important properties and Laser Rate Equations, Three and Four level lasers, types of lasers. Module 1: Basics, Operating Principles and Types of Lasers CO 4: to understand the important properties and Uses of Lasers Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers. Module 2: Spectral Properties and Uses of Lasers Introduced Fusion and Laser Cooling, Biomedical Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Optical Phenomena Introduced Fusion and Laser Cooling, Biomedical A	1. To impart a co	mprehensive course on the operating principles $-$ stimulated e	emiss	ion a	nd po	opulation			
 2. To disseminate lectures on the applications of lasers in industrial, biomedical and research and development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO₂ Lasers. Module 2: Spectral Properties and Uses of Lasers – Ruby, Helium-Neon and Loser Cooling, Biomedical Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Optical Phenomena Module 3: Nonlinear Optics, Nonlinear Polarization, 2nd Harmonic Generation, Phase Modulation, Fourware Mixing and Phase Conjugation. Textbook (s) Optical Electronics, A. Ghatak	inversion, spectral	properties and types of lasers.			1	1			
development sectors. 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and Phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Laser Printing, Research Application, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optics Notical Phenomena	2. To disseminate	e lectures on the applications of lasers in industrial, biome	dical	and	rese	arch and			
 3. To give the students an overview of nonlinear optics and the important properties of nonlinear optical materials. 4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and Co₂ Lasers. Module 2: Spectral Properties and Uses of Lasers Io hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Opthalmic Surgery. Module 3: Nonlinear Optics, Nonlinear Polarization, 2nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Prametric Amplification. Module 4: Nonlinear Optics, Nonlinear Polarization, 2nd Harmonic Generation, Phase Modulation, Four-Wave Mixing and Phase Conjugation.	development sector	Drs.							
4. To evaluate the connection between the properties of nonlinear optical materials and the numerous phenomena that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophitalmic Surgery. Module 3: Nonlinear Optics 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Terewook (s) 1 Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). <td>3. To give the stude</td> <td>nts an overview of nonlinear optics and the important properties of n</td> <td>online</td> <td>ar op</td> <th>tical r</th> <td>naterials.</td>	3. To give the stude	nts an overview of nonlinear optics and the important properties of n	online	ar op	tical r	naterials.			
that could be attributed to such properties. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers Introduction to lasers, Stamples of Lasers Module 2: Spectral Properties and Uses of Lasers Module 2: Spectral Properties and Uses of Lasers Module 3: Nonlinear Optics Introduction to lasers, Stamples of Lasers Module 3: Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Opt	4. To evaluate the c	connection between the properties of nonlinear optical materials and	the n	umer	ous pł	nenomena			
Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einst=in Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers Introductions – Laser Printing, Research Applications – Laser Induced Fusion and Laser Coing, Biomedical Applications – Laser Printing, Research Application, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 3: Nonlinear Optical Phenomena Module 3: Nonlinear Optical Phenomena Overview of Nonlinear Optical Phenomena Module 3: Nonlinear Optical Phenomena Totow Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge	that could be attribut	ited to such properties.			-				
After successful completion of the course, the students will be able CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. CO 4: to understand the important properties and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers - Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Optical Poptical Poptical Parametric Amplification. Module 3: Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optics, Roeff Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2017). 2. Nonlinear Optics, Beoff Boyd	Course Outcome:								
CO 1: to understand the basics of the operating principles and types of lasers. CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Optical Poptics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Modulation, Fourwave Mixing and Phase Conjugation. Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Boett Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers - Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 1.<	After successful con	npletion of the course, the students will be able							
CO 2: to analyze the spectral properties of lasers and to understand the applications of lasers in industrial, biomedical and research applications. Industrial, biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. 2. Lasers and Nonlinear Optic	CO 1: to understand	the basics of the operating principles and types of lasers.							
biomedical and research applications. CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers — Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms — Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications — Laser Printing, Research Applications — Laser Induced Fusion and Laser Cooling, Biomedical Applications — Opthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four- Wave Mixing and Phase Conjugation. Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books Reference Books 1. Lasers and Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	CO 2: to analyze	the spectral properties of lasers and to understand the application	ns of	laser	s in i	industrial,			
CO 3: to comprehend the factors leading to nonlinear optical properties in materials. CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level asers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. 10 hours Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. 15 hours Module 3: Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 20 2. Nonlinear Optics, B. B. Laud, New Age International (2023). Iasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	biomedical and rese	arch applications.							
CO 4: to understand the important properties and phenomena associated with nonlinear optical materials. Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Interstop Kerr 1 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2 2. Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2 2. Introduction to Nonlinear Optics, Geoffrey New, C	CO 3: to comprehen	nd the factors leading to nonlinear optical properties in materials.							
Module 1: Basics, Operating Principles and Types of Lasers 20 Hours Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Too hours Module 2: Spectral Properties and Uses of Lasers Nuby, Helium-Neon and CO ₂ Lasers. Ioh ours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. 2. Nonlinear Optics, Bobert Boyd, Academic Press Inc; 3rd edition (2008). 3. 3. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 3. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 3	CO 4: to understand	I the important properties and phenomena associated with nonlinear of	optical	mate	erials.				
Introduction to lasers, Stimulated and Spontaneous Emission, Optical Cavities, Einstein Coefficients, Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO2 Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. 15 hours Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 2. I	Module 1: Basics,	Operating Principles and Types of Lasers			20 Ho	ours			
Population Inversion, Threshold Condition, Laser Rate Equations, Three and Four level lasers, types of lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. 15 hours Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optica, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. 2. Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011). 2.	Introduction to la	sers, Stimulated and Spontaneous Emission, Optical Cavities	s, Eir	istein	Coe	fficients,			
lasers - CW and Pulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and CO ₂ Lasers. Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Module 3: Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours Textbook (s) I 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). Iasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books Iasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Population Invers	ion, Threshold Condition, Laser Rate Equations, Three and Fo	our le	vel la	asers,	types of			
Module 2: Spectral Properties and Uses of Lasers 10 hours Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group ∨elocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours Textbook (s) 1 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 1 2. Nonlinear Optics, B. B. Laud, New Age International (2023). 1 Reference Books 1 1 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	lasers - CW and P	ulsed Lasers, Examples of Lasers – Ruby, Helium-Neon and Co	O_2 La	sers.					
Line Broadening Mechanisms – Natural, Collision and Doppler Broadening, Quality Factor, Industrial Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group ∨elocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours Textbook (s) 1 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. 2. Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Module 2: Spectra	al Properties and Uses of Lasers			10 ho	urs			
Applications – Laser Printing, Research Applications – Laser Induced Fusion and Laser Cooling, Biomedical Applications – Ophthalmic Surgery. Isomedical Applications – Ophthalmic Surgery. Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Isomedical Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Textbook Textbook (s) I Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Line Broadening	Mechanisms – Natural, Collision and Doppler Broadening, Q	Quality	/ Fac	ctor,	Industrial			
Applications – Ophthalmic Surgery. 15 hours Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours Textbook (s) 1 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. 2. Nonlinear Optics, Bobert Boyd, Academic Press Inc; 3rd edition (2008). 5 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). 5 Reference Books 1 1 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Applications – Las	er Printing, Research Applications – Laser Induced Fusion and L	aser	Cooli	ng, B	iomedical			
Module 3: Nonlinear Optics 15 hours Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optical Phenomena 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). Velocity, Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Applications – Oph	thalmic Surgery.							
Overview of Nonlinear Optics, Nonlinear Polarization, 2 nd Harmonic Generation, Phase Matching, Sum and Difference Frequency Generation, Optical Parametric Amplification. Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 15 hours Textbook (s) Image: Self-focus of the self of	Module 3: Nonlin	ear Optics		-	15 ho	urs			
and Difference Frequency Generation, Optical Parametric Amplification. 15 hours Module 4: Nonlinear Optical Phenomena 15 hours Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Four-Wave Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Textbook (s) Image: Conjugation of the second sec	Overview of Non	linear Optics, Nonlinear Polarization, 2 nd Harmonic Generation	ı, Pha	ase N	latch	ing, Sum			
Module 4: Nonlinear Optical Phenomena 15 hours Group ∀elocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Four-Wave Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Textbook (s) Image: Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	and Difference Fre	equency Generation, Optical Parametric Amplification.							
Group Velocity Dispersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self-Phase Modulation, Four-Wave Mixing and Phase Conjugation. Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Module 4: Nonlin	near Optical Phenomena			15 ho	urs			
Wave Mixing and Phase Conjugation. Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Group Velocity Di	spersion, Self-focusing, Kerr effect, Cross-Phase Modulation, Self	-Phas	e Mo	dulati	on, Four-			
Textbook (s) 1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Wave Mixing and F	hase Conjugation.							
1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017). 2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). 3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	Textbook (s)								
 Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008). Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011). 	1. Optical Electronics, A. Ghatak and K. Thyagrajan, Cambridge India (2017).								
3. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023). Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	2. Nonlinear	2. Nonlinear Optics, Robert Boyd, Academic Press Inc; 3rd edition (2008).							
Reference Books 1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications (2019). 2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	5. Lasers and Nonlinear Optics, B. B. Laud, New Age International (2023).								
 Lasers – Fundamentals and Applications, K. Thyagrajan and A. Gnatak, Laxim Publications (2019). Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011). 	Keierence Books 1	Fundamentals and Applications V. Thusausian and A. Chatab	0	: Dŀ	Bast				
2. Introduction to Nonlinear Optics, Geoffrey New, Cambridge University Press (2011).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. Lasers – Fundamentals and Applications, K. Thyagrajan and A. Ghatak, Laxmi Publications							
2. Introduction to Monimical Optics, Geomety Mew, Cambridge Oniversity (2011).	2 (2019).	ion to Nonlinear Ontics, Cooffrey New Combridge University D	•066 ('	2011)					
		ion to monificar Optics, Geomey New, Cambridge Oniversity Pl	C35 (4	2011)	•				

DSF I	Computational Physics	L	Т	Р	С
DSE I Computational Physics		2	0	4	4
Pre-requisite: Bas	ic Physics and Mathematics				
Course Objectives	5:				
1. To provide	knowledge about the role of computers in solving physical	problem	IS.		
2. To make students learn how to make flowcharts and algorithms to solve physical problems.					
3. To teach programming languages Fortran and Python.					
4. To provide hands-on training on computer programs for solving physical problems (applications).					
5. To teach data visualization using basic commands of GNU plot. Matplotlib and Plotly.					

Course Outcome:

After successful completion of the course, the students will be able to

CO1: Analyse the role of computers in solving physical problems

CO 3: Undertand how to write computer programs using Fortran and Python to solve simple problems.

CO 4: Apply computers for solving problems in Physics.

CO 5: Learn the basic commands of GNU plot, Matplotlib and Plotly.

Module 1: INTRODUCTION

Importance of computers in Physics, paradigm for solving physics problems for solution. Introduction to various OS, Linux OS such as RedHat, Ubuntu, Scientific Linux, Usage of Basic linux commands. Text editors such as vi and Emacs. [SEP]

Module 2: BASICS OF SCIENTIFIC PROGRAMMING

Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Ouadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal. SEP

Module 3: SCIENTIFIC PROGRAMMING

Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.

Programming with Python

Module 4: CONTROL STATEMENTS, FUNCTIONS AND SUBROUTINES

Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. SEP

Module 5: VISUALIZATION

Introduction to graphical analysis and its limitations. Introduction to Gnuplot. Importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, curve fitting - straight line, polynomials, user defined function. Physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot.

Visualization using Matplotlib, Plotly

Total Lecture hours	
HANDS ON EXERCISES	30hours

9 hours

9 hours

5 hours

3 hours

4 hours

1)Usage	e of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor.			
2)To pr	int out all natural even/ odd numbers between given limits.			
3)To fir	nd maximum, minimum and range of a given set of numbers.			
4)Calcu	lating Euler number using exp(x) series evaluated at x=1			
5)To co	empile a frequency distribution and evaluate mean, standard deviation etc.			
6)To ev	valuate sum of finite series and the area under a curve.			
7)To fir	nd the product of two matrices			
8)To fir	nd a set of prime numbers and Fibonacci series.			
9)To wi	rite program to open a file and generate data for plotting using Gnuplot.			
10)	Plotting trajectory of a projectile projected horizontally.			
11)	Plotting trajectory of a projectile projected making an angle with the horizontally.			
12)	Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an $\frac{1}{3EP}$ eps file and as a pdf file.			
13)	To find the roots of a quadratic equation.			
14)	Motion of a projectile using simulation and plot the output for visualization.			
15)	Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.			
16)	Motion of particle in a central force field and plot the output for visualization.			
Total h	ours (Lecture + Hands on) = 60 hours			
Text Bo	ook(s)			
1. 111100	fuction to Numerical Analysis, S.S. Sastry, 5 Edn., 2012, PHI Learning Pvt. Etd.			
2. Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI).				
3. Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999)				
Reference Books				
1.	Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)			
2.	Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Ep Delhi(1999)			

2. To enable students to learn different methods of synthesis and characterization of nano structured materials. 3. To make students familiar with optical properties of nanomaterials. 4. To learn about the remarkable electron transport properties of nanomaterials. 5. To provide knowledge about application of nanomaterials. **Course Outcome:** After successful completion of the course, the students will be able to CO1: Understand physics at the nanoscale. CO 2: Analyse different methods of synthesis and characterization of nanomaterials. CO 3: Understand different features associated with optical and transport properties at the nanoscale. CO 5: Apply properties of materials at the nanoscale in emerging areas. **Module 1: NANOSCALE SYSTEMS** Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement : Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences. **Module 2: SYNTHESIS OF NANOSTRUCTURE MATERIALS** Top down and Bottom-up approach, Photolithography, Ball milling, Gas phase condensation, Vacuum deposition, Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition, Chemical vapor deposition (CVD), Sol-Gel, Electro deposition, Spray pyrolysis. Hydrothermal synthesis, Preparation through colloidal methods, Molecular Beam Epitaxy growth of quantum dots. **Module 3: CHARACTERIZATION** X-Ray Diffraction, Optical Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Scanning Tunneling Microscopy Module 4: OPTICAL PROPERTIES Coulomb interaction in nanostructures, Concept of dielectric constant for nanostructures and charging of nanostructure, Quasi-particles and excitons, Excitons in direct and indirect band gap semiconductor nanocrystals, Quantitative treatment of quasi-particles and excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostructures and nanostructures **Module 5: ELECTRON TRANSPORT**

Carrier transport in nanostructures. Coulomb blockade effect, thermionic emission, enerling and hoping conductivity. Defects and impurities: Deep level and surface defects.

Module 5: APPLICATIONS

Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots- magnetic data storage. Micro Electromechanical Systems (MEMS), Nanoelectromechanical Systems (NEMS).

Total Lecture hours

Text Book(s)

1.

C. P. Poole Jr. & F. J. Owens, Introduction to Nanotechnology, (Wiley-Interscience,

DSE I

Course Objectives:

Pre-requisite: Basic Physics

INTRODUCTION TO NANOSCIENCE

1. To provide fundamental knowledge about nanomaterials

8 hours

8 hours

10 hours

14 hours

60 hours

6 hours

14 hours

	2003)				
2.	S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)				
3.	K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and				
	<i>Technology</i> (PHI Learning Private Limited).				
Referen	Reference Books				
1.	Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).				
2.	M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology				
	Handback (Elsovier 2007)				

Semester V

DSC	Analog Electronics	L	T	P	C		
D D 1		4	0	0	4		
Pre-requisite: Pre	iminary concept of 12 th standard Physics course.						
Course Objectives	:						
(1) To enhance the (2) To have a there	knowledge in band theory of solids and semiconductors.						
(2) To have a thorough knowledge on optical excitation and devices.							
(3) To have a broad (4) To only only the	the second provide the second se						
(4) To eminance the (5) To develop the	concept of oscillators						
(J) To develop the	concept of oscillators.						
After successful o	ompletion of the course, the students will be able						
Allel successful c				0			
CO 1: to understa	nd the basics of junction diodes, transistors, amplifiers, oscillato	rs an	a CR	0.			
CO 2: to apply the	e theories of basic electronic circuits to study their characteristic	s curv	ves.				
CO 3: to analyze $CO 4$ to a life	the results of different parameters related to the electronics circu	its.					
CO 4: to different	late between the properties and applications of the electronic de	vices.	•				
CO 5: to evaluate	different parameters of the electronic devices						
Module 1: Junctio	ons Diodes			12 h	ours		
Fabrication and Ty	pes of Junctions, Unbiased pn junction, energy level diagram and l	ouilt i	n				
potential, diffusior	and drift of carriers: Einstein relation, biased pn junction, volt-an	ıр					
characteristic of pr	n junction, effect of temperature on I-V characteristics, DC and AC	•					
resistance of pn ju	nction, junction capacitance, ener diode, tunnel diode, light emitt	ing					
diode, point contac	et diode, liquid crystal display.						
Module 2: Trans	istors			12 h	ours		
Introduction, Bipo	olar Junction Transistor, Transistor currents, Transistor fabrication,						
Transistor Configu	ration and Characteristics, Common base and common emitter stat	ic					
characteristics, Transitor alpa and beta, current and voltage notation, load line, transistor							
biasing:fixed bias	or base bias, collectror-feedback bias, emitter- feedback bias						
Module 3: Amplif	ïers			20	hours		
Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as							
a 2-port Network. H-parameter. Equivalent Circuit. Analysis of a single-stage CE amplifier using							
Hybrid Model.Input and Output Impedance. Current, Voltage, and Power Gains. Classification							
of Class A, B & C Amplifiers. Differential amplifiers.							
Characteristics of an Ideal and Practical Op-Amp (IC 741). Open-loop and Closed-loop Gain.							
Frequency Respon	Frequency Response. CMRR. Slew Rate and Concept of Virtual Ground.						
Field effect transis	Field effect transistors: JFET, MOSFET, FET amplified model and parameters, FET versus BJTs,						

Feedback	k principle.				
Module 4	4: Oscillators	8 hours			
Types of	oscillators, basic principle of oscillator, requirements of feedback oscillators, tuned-col	llector			
oscillator	r, Hartley Oscillator, Colpitts Oscillator, phase shift oscillator				
Module	5: Introduction to Cathode Ray Oscilloscope (CRO)	8 hours			
Block Di	iagram of CRO. Electron Gun, Deflection System, and Time Base. Deflection Sensitivit	ty.			
Applicat	ions of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency	· ,			
and Phas	be Difference.				
Total Le	cture hours	60 hours			
Textbool	Textbook(s)				
1.	Streetman, B. and Banerjee, S., Solid State Electronics, Prentice Hall India, (2006)	1.			
2	Jasprit Singh, Semiconductor Devices: Basic Principles by John Wiley & Sond ptd Ltd	d			
3.	Singapore				
	Donald Neamen, Dhrubes Biswas "Semiconductor Physics and Devices" McGraw-Hi	ill			
4.	Education				
	C.T. Sah, Fundamentals of solid-state electronics, World Scientific Publishing Co Inc, 1991.				
Reference Books					
1.	Y. Tsividis and M. Colin, Operation and Modeling of the MOS Transistor. Oxford Un	iv. Press,			
	2011				
2.	A.K. Maini, N. Maini, All-in-One Electronics Simplified, Khanna Book Publishing, N	lew Delhi,			
	2021.				

DSC	Waves and Ontics	L	Τ	P	C
DOC		4	0	0	4
Pre-requisite: Basic Phy	ysics and Mathematics				
Course Objectives:					
6. To provide the fundamental knowledge of collinear and perpendicular harmonic oscillations.					
7. To enable students to learn different properties wave motion, velocity of waves and their superposition.					
8. To make student	s familiar with electromagnetic nature of light and its propertie	s.			
9. To make students familiar with wave phenomena like interference and diffraction and interferometers.					
Course Outcome:					
After successful complet	tion of the course, the students will be able to				
CO1: Apply the knowled CO 2: Learn the properti	lge of collinear and perpendicular harmonic oscillations to relate of superposition of waves and their applications.	ited fi	elds.		
CO 3. Understand the fu	ppreciate the electromagnetic nature of fight.	ladar	to di	fform	nt
physical phenomenon	indamentals of interference and diffraction and apply this know	leuge		merei	IL
Module 1: SUPERPOS	SITION OF COLLINEAR HARMONIC OSCILLATIO	NS	8	hou	rs
Simple harmonic motio	on (SHM) linearity and superposition principle superpositi	on of	two	colli	near
oscillations having (1)	equal frequencies and (2) different frequencies (beats).	Super	positi	ion o	of N
collinear harmonic osci	llations with (1) equal phase differences and (2) equal frequ	encv	diffe	ence	s.
Module 2: SUPERPOS	SITION OF PERPENDICULAR HARMONIC	eneg	3	hom	rs
OSCILLATIONS			ľ	nou	
Graphical and analytical methods. Lissajous figures with equal and unequal frequencies and their					
uses.					
Module 3: WAVE MO	TION		9	9 hou	rs
Plane and spherical way	ves. Longitudinal and Transverse waves. Plane progressive	(Trav	elling	g) wa	ves.

Wave equation. Particle and wave velocities. Pressure of a longitudinal wave. Energy tran	sport.
Intensity of Wave.	
Module 4: VELOCITY OF WAVES 8 ho	ours
Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid	l in a
Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction.	
Module V: SUPERPOSITION OF TWO HARMONIC WAVES 5 ho	ours
Stationary (Stationary) waves in a string: fixed and free ends. Analytical treatment. Phase and	group
velocities. Changes with respect to position and time.	
Module VI: WAVE OPTICS 3 ho	ours
Electromagnetic nature of light. Definition and properties of wavefront. Huygen's Principle. Tem	iporal
and Spatial coherence.	
Module VII: INTERFERENCE 9 ho	ours
Division of amplitude and wavefront. Young's double slit experiment. Lloyd's mirror and Free	snel's
biprism, phase change on reflection: Stoke's treatment. Interference in thin films, parallel and w	edge-
shaped films, fringes of equal inclination (Haidinger fringes), fringes of equal thickness (F	izeau
fringes). Newton's rings: Measurement of wavelength and refractive index. Interferometers ((basic
concept)	
Module VIII: POLARIZATION 5 ho	ours
Polarized light and its mathematical representation, Production of polarized light by reflection,	
refraction and scattering, Polarization by double refraction and Huygen's theory, Nicol prism,	
production and analysis of circularly and elliptically polarized light.	
Module IX: DIFFRACTION 10 h	iours
Fraunhofer diffraction: Single slit, rectangular and circular aperture, resolving power of a teles	scope,
double slit, multiple slits, diffraction grating, resolving power of a grating.	1 '
Fresnel diffraction: Fresnel's Assumptions. Fresnel's half period zones for plane wave, explanation	ion of
rectilinear propagation of light. Theory of Zone Plate: Multiple foci of a zone plate, Fresnel's In	tegal,
Fresnel diffraction pattern of a straight edge, a slit and a wire.	-
Total Lecture hours 60 h	ours
Text Book(s)	
1. Waves: Berkeley Physics Course, Vol. 3, Francis Crawford, 2007, Tat McGraw-Hill.	
2. Optics, Ajoy Ghatak, Tata McGraw-Hill.	
Reference Books	
1. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, Mc-Graw Hill.	
2. Vibrations and Waves, A.P. French, 1 st Edn, 2003, CRC Press.	

DSC	Analog Flectronics Lab	L	Т	Р	С	
DSC	Analog Electronics Lab	0	0	4	2	
Course Objective -						
 The Objective of this course is to provide an experimental foundation for the theoretical concepts introduced in the lectures. 						
2) To help students u inferences based o	 To help students understand the role of direct observation in physics and to distinguish between inferences based on theory and the outcomes of experiments. 					
3) The students will and develop their p	acquire motivation to develop small experiments relate physical understanding.	ed to t	hese t	echni	ques	
4) Gain knowledge o understand more d	of new concept in the solution of practical oriented proble eep knowledge about the solution to theoretical problem	ems ar is.	nd to			
Course Outcome:						
CO1: Learning basic	concept of diode and Zener diode and its working print	ciple				
CO2: Get the knowle	dge of transistor and its working principle.					
CO3: To enhance the	knowledge of hall effect and band theory of semicondu	ictors a	and			
CO4: The course will	help to understand the concept of dielectric and ferroeld	ectric 1	nateri	al.		
List of Experiments :						
1) To draw the sta DC and AC resis	atic characteristics curves of a semiconductor diode and stance for a given current.	hence	to det	ermir	ie its	
2) To draw the ch	aracteristics of a Zener diode.					
 To draw chara and to determine 	cteristics curves of a Transistor in CE configuration for c ne the AC current gain from the active region of the charac	lifferei cteristi	nt bas cs cur	e curi ves.	rents	
4) To determine t	he Planck's constant using LEDs of at least 4 different colo	urs.				
5) Determine the	Band gap of a semiconductor by four probe method					
6) Measure the Ha	all Effect in Semiconductor.					
7) Measurement of	of magnetic susceptibility by Quincke's tube method					
8) To determine t	he dielectric constant of material					
9) To study the ha	lf wave and full wave rectifier of a diode					
10) To draw static	characteristics of a junction field effect transistor(FET) a	nd hen	ice to	deter	mine	
its parameters						
Total Lab Hours :			60) Hou	rs	

Total Lab Hours : Text Books :

- 1) A TEXT BOOK ON PRACTICAL PHYSICS: K.G. MAZUMDAR & B.GHOSH.
- 2) A TEXT BOOK ON PRACTICAL PHYSICS: Dr. SAMIR KUMAR GHOSH.
- 3) ADVANCED PRACTICAL PHYSICS FOR STUDENTS, B. L. FLINT AND H.T. WORSNOP, 1971, ASIA PUBLISHING HOUSE
- 4) A TEXT BOOK OF PRACTICAL PHYSICS, I.PRAKASH & RAMAKRISHNA, 11THED., 2011, KITAB MAHA

DSC	Waves and Optics Lab	L	Τ	P	C	
		0	0	4	2	
Prerequisite : B	asics of 12 standard Physics lab					
Course Objective	<u>,</u>					
1) The students will be able to interpret data (both theoretical and experimental) and subsequently learn how the important parameters can be derived from a given set of results.						
2) The students will be able to understand the operational principle of these components while using them for experimental investigations.						
3) The studen improve the kno	ts will learn the physics of different optical instrumentations wledge of nature of light.	and	the	ways	s to	
Course Outcom	ie:					
CO1: Students g	get the basic idea of the knowledge of nature of light.					
CO2: Get the kn	owledge of focal length and other properties of light.					
CO3: To enhance	the knowledge of refractive index and diffraction of light.					
CO4: The course	e will help to understand the nature of ultrasonic wave and diffe	rent r	node	s of		
List of Experim	ents :	·				
1) Determin	ie the power of a) convex lens b) concave lens.					
2) Determin	ie the focal length of a concave mirror with the help of a convex le	ns				
3) Determin	e the refractive index of water by using convex lens and a mirror					
4) To deter apparatu	mine the radious of curvature of a Plano-Convex lens by usi s.	ng N	ewto	n's i	ring	
5) To deterr	nine the refractive index of the material of a prism by using Spect	rome	ter.			
6) To deterr	nine the wavelength of laser source using diffraction of single slit.					
7) To deterr	nine the wavelength of laser source using diffraction of single slit.					
8) To deterr	nine the wavelength of laser source by using diffraction grating.					
9) To deterr	nine the velocity of a ultrasonic wave in a liquid by using spectron	neter	•			
10) To deterr	nine the frequency of an electrically maintained tuning fork by,					
a) Tra	nsverse mode of vibration b) Longitudinal mode of vibration.					
Total Hours:		6	50 ho	urs		

1) A TEXT BOOK ON PRACTICAL PHYSICS: K.G. MAZUMDAR & B.GHOSH

2) A TEXT BOOK ON PRACTICAL PHYSICS: Dr. SAMIR KUMAR GHOSH

- 3) ADVANCED PRACTICAL PHYSICS FOR STUDENTS, B. L. FLINT AND H.T. WORSNOP, 1971, ASIA PUBLISHING HOUSE
- 4) A TEXT BOOK OF PRACTICAL PHYSICS, I.PRAKASH & RAMAKRISHNA, 11THED., 2011, KITAB MAHA

					-
DSE II	SUSTAINABILITY SCIENCE	L	Τ	P	C
	Sebirm (Abient i Seienee	4	0	0	4
Pre-requisite: 12	th standard Physics course				
Course Objective		1.			
(1) aims to ennan	ce the knowledge on sustainability development by means of vario	us th	eorie	s.	
(2) to have a bloa	er concept on different approaches of sustainability development				
(3) to have a wide					
A ftor successful	completion of the course, the students will be able				
After successful	completion of the course, the students will be able		1		
COI: to understa	and sustainability development, green technologies and different ap	proa	ches	to	
sustainability dev	elopment.				
CO2. to apply u	tiste between various technological approaches towards sustain	hilit	K 7		
CO3. to differentiate $CO4$. to identify	the best technique for a sustainable future	ionn	у.		
Module 1: Sustai	nability and sustainable development			20 ho	ours
Introduction Obje	ectives Population and food Resources and limits to growth understa	ndin	7 51151	ainah	ility
development-pilla needs and approa development app sustainability dev Brundtland: criti sustainability. Sus	rs of sustainable development, ecological foundations of basic haches: Abraham Maslow's Hierarchy of needs and related approa proach, sustainability hierarchy, equity, basic needs and ecological velopment, Brundtland report, post Brundtland report-evolving cs, intra and Inter-generational equity in resources availabilit tainable Development Goals (SDGs) and strategies to achieve the 17.5	uman aches, ogy, conc ty, c SDGs	, hur prin ept, limer	nan s ciples the sions	man cale of post of
Module 2: Sustai	nability science and Green technology	000		20 ho	urs
Objectives, defin structure of sust population and g issues, climate of essential component of technology-not technologies, cent single purpose evolutionary cap sustainable techn	ning sustainability science, central elements of sustainability ainability science, sustainability science as discipline, global of growth rate, inequities and social disruption, gender dimension change, rising materialism and vanishing ethical issues, Techno ents of technology- hardware and software, peopleware, manager nmineral based versus mineral based technologies, automation ve tralized versus decentralized technologies, individual versus colle versus multi-purpose technologies, technological development bacity of technology, concept of sustainable technology, const ology	scien challe in o ology nent rsus ctive and raints	ace, enges envir and ware labou tech envis s in	goal s, hur onme l soci , syst ur inte nolog ironm adop	and man intal iety, ems ense gies, ient, oting
Module 3: Appro	oaches towards sustainability development			20 ho	ours
Natural resource	management: objectives, natural resources-classification and com	npone	ents,	probl	ems
and issues, natu	ral resource management-causes and depletion of natural reso	ource	s, ap	proa	ches
applied on natu approach, commu Watershed Mana watershed manage	ral resource management-integrated approach, adaptive appro- inity based natural resource management, gender and natural resou agement: Objectives, the waters, hed, characteristics, concept rement-watershed management and local livelihood, watershed ma	ach, rce n and	prec nanag defin ment	aution gemen nition	nary nt 1 of 1 dia

Approaches-sectoral approach for watershed management, integrated watershed management.
Participation in policy and planning: objectives, concepts, coordination, collaboration and cooperation, participatory development communication, tools and methodology for effective utilization of communication, Physical exposure to organizations working on sustainable practices and relevant activities, e.g., WWF-India, Climate Partner, etc.
Total Lecture hours
60 hours
Text Book(s)

1.	Jeremy L. Caradonna, Sustainability: A History, (2014), Oxford University Press.
2.	David Auge, Man's Search for Sustainability, (2023), AMZ Book Publishing Services.
3.	Bell, Michael and Michael, S. Carolan, <i>An Invitation to Environmental Sociology</i> , (2004), Pine Forge Press, New York.
4.	Ellent, R, Environment, Subsistence and System, (1983), Cambridge University Press.
Referei	nce Books
1.	Sustainability Science: Managing Risk and Resilience for Sustainable Development,
2	(2023), Elsevier.
۷.	Maslow, A.H, Motivation and Human Personality (1970), Harper, New York.

DSE II	CRVSTAL ANALVSIS	L	Т	Ρ	С	
DSE II	CRISIAL ANALISIS	4	0	0	4	
Pre-requisite: 12	^h standard Physics course					
Course Objective						
(1) aims to enhance the concepts of crystal structure by study of different parameters and structure of						
different crystals						
(2) to be familiar with the properties, applications of X-rays and X-ray diffraction methods.						
(3) enhance the k	nowledge of all experimental techniques which explains crystal str	uctur	e.			
(4) to have a broa	der perspective on the analysis of crystal composition, size, and m	orpho	ology	via		
different techniqu	les.					
Course Outcome						
After successful	completion of the course, the students will be able					
CO1: to unders	tand, X-ray diffraction studies related to crystals, experiment	tal te	chnic	ques	and	
analysis.						
CO2: to remember	er various laws that is the basis in understanding crystals and their	chara	acter	istics		
CO3: to apply th	e theories of crystals to study the structures pof different crystal	s.				
CO4: to analyse	the crystal structure through different theoretical and experimental	tech	nique	s.		
Module 1: Crysta	al Structure			10 ha	ours	
Solids: Amorphou	s and crystalline, space lattice, basis vectors, unit cell, lattice paramet	ers, c	rystal	syste	ems,	
Bravais lattices, c	rystal plane and Miller Indices, interplanar spacing, indices of a direc	ction,	symr	netry	and	
symmetry element	ts.					
Module 2: X-Ray	Diffraction			20 ho	ours	
X Rays- produc	tion, continuous and characteristic X rays, X-ray diffraction,	Lau	e exp	perim	ent,	
Bragg's law, Lau	e equations, X –ray powder diffraction, Debye- Scherrer Techniqu	e.				
Reciprocal lattice, Geometrical Construction of the reciprocal lattice, reciprocal lattice for simple						
cubic and f.c.c lattices, diffraction of X-rays on reciprocal lattice, Bragg's condition in terms of						
reciprocal lattice, vector form of Bragg's equation, Brillouin Zone.						
Module 3: Exper	imental Techniques			15 ho	ours	
Basics of TEM,	TEM instrumentation: electron sources; electromagnetic lenses; g	eome	tric a	ind w	ave	

optics applied to TEM; lens aberrations and resolution					
Interaction between fast electron and thin crystal, SEM, EDS, SAED (experimental details).	Interaction between fast electron and thin crystal, SEM, EDS, SAED (experimental details).				
Module 4: Analysis 15	5 hours				
Analysis of a sample: X-ray fluorescence, X-ray diffraction, SEM, TEM, HR-TEM, EDS, SAED					
(students are to visit to Instrumentation centres having these facilities)					
Total Lecture hours 60) hours				
Text Book(s)					
1. William D. Callister, Jr., Materials Science and Engineering: An Introduction, 7th Edition	on, John				
Wiley & Sons, (2006).					
Maureen M. Julian, Foundations of Crystallography, Taylor & Francis Group (2008)					
2. Whateen Wi. Suman, I oundations of erystanography, Taylor & Tranets Group (2000).					
² Martin T. Dove, Structure and Dynamics-An atomic view of materials, Oxford University					
Press, (2003).					
4. P.D. Cullity and S.P. Stock Elements of Y ray Diffraction 3rd edition Addison V	Waslay				
B.D. Cullity and S.K. Slock, Elements of X-ray Diffraction, Sid edition, Addison-V	westey				
Poforonae Poetra					
	D1 11				
I. J. W. Edington, Practical Electron Microscopy in Materials Science, MacMillan, I	Philips				
Technical Library, Eindhoven (1974).					
^{2.} M. de Graef, Introduction to Conventional Transmission Electron Micro	oscopy,				
Cambridge University Press, New York (2003).					

Semester VI

DSC	Thermal Physics	L	T	P	C	
Pre-requisite: M	athematical Physics and Basic Physics	-	U	U	4	
Course Objective	s:					
1. To deliver a	comprehensive course on the basics of thermodynamics, the h	aws	of rad	liatio	n and	
statistical physic	s at the undergraduate level	ans	51 140	and the o	ii uiiu	
2 To disseminat	the lecture on the physics behind the three laws of thermodynam	nics a	nd th	e coi	ncents	
of Entropy and I	Inattainability of Absolute Zero	nes e	ing th		neepts	
3. To give the st	udents a view of why the statistical description of the photon -	auan	a of	radia	tion is	
important in the th	neory of thermal radiation.	1				
4. To analyze ho	w the statistical concept of microstates and macrostates could expla	in th	e ther	mody	vnamic	
properties of mate	rials.			•		
Course Outcome	:					
After successful c	ompletion of the course, the students will be able					
CO 1: to compreh	nend the importance of the Zeroth and First Law of Thermodynamic	cs in	the w	ork d	one in	
thermodynamics p	processes.					
CO 2: to underst	and the concept of Entropy in thermodynamic transformations and	l the	physi	cs of	phase	
transitions on the	basis of the Maxwell's Relations and the Clausius-Clayperon's Equat	ion.				
CO 3: to understa	nd the base of thermodynamic properties such viscosity, conductivity	y and	diffu	sivity	in the	
Kinetic Theory of	Gases.		1	C		
CO 4: to analyze	e how the ultraviolet catastrophe was resolved by adopting the	princi	ples	of qu	antum	
mechanics in the s	statistical description of radiation.		1	5 II.		
Module 1: Funda	imental Concepts and the First Law of Thermodynamics	6 70		15 H0	ours ·	
Basic Idea of the Thermodynamic Description of a System, Zeroth Law of Thermodynamics,						
Thermal Equilibrium, Concept of Temperature. Exact Differentials, First Law of Thermodynamics –						
Internal Energy,	Work Done in Thermodynamic Processes – Isothermal, Ad	iabat	ic, Is	obarı	c and	

Isochoric, Path Dependence of Work Done, Degrees of Freedom, C_p - C_y and C_p/C_y Relation.			
Module 2: 2 nd Law of Thermodynamics, Entropy and Thermodynamic Potentials 15 hours			
Carnot Cycle, Second Law of Thermodynamics - Clausius and Kelvin-Planck Statement, Entropy,			
Temperature-Entropy Diagrams, Entropy Changes in Reversible and Irreversible Processes, Principle of			
Increase of Entropy, Third Law of Thermodynamics - Unattainability of Absolute Zero (Qualitative Idea).			
TdS Equations, Physics of the Thermodynamic Potentials - Internal Energy, Enthalpy, Helmholtz free energy,			
and Gibbs free energy, Maxwell's Relations, Joule-Thompson Expansion, Phase Transition - 1st and 2nd order			
and the Clausius-Clayperon Equation, Surface Films and Variation of Surface Tension with Temperature,			
Magnetic World and Cooling due to Adiabatic Demagnetization.			
Module 3: Kinetic Theory of Gases10 hours			
Basic Assumptions, Molecular Flux, Principle of Equipartition of Energy, Classical Theory of			
Specific Heat Capacity. Real Gas and the Van der Waals' Equation of State, Collision Cross Section,			
Mean Free Path, Coefficient of Viscosity, Thermal Conductivity and Diffusion.			
Module 4: Thermal Radiation and Statistical Physics20 hours			
Blackbody Radiation, Spectral Distribution, Rayleigh-Jean's Law, Ultraviolet Catastrophe, Planck's			
Postulate, Birth of Quantum Mechanics, Stefan-Boltzmann Law, Wien's Displacement Law.			
Energy States and Energy Levels, Necessity of Statistics in Thermodynamics, Macrostate and Microstate,			
Boltzmann and Shannon Entropy, Thermodynamic, Probability, Classical Statistics - Maxwell-Boltzmann			
Distribution, Quantum Statistics – Fermi-Dirac and Bose-Einstein Distribution.			
Textbook (s)			
1. Thermal Physics: with Kinetic Theory, Thermodynamics and Statistical Mechanics, S. C. Garg, R. M.			
Bansal and C. K. Ghosh, McGraw Hill (2017).			
2. Thermodynamics, Kinetic Theory and Statistical Thermodynamics, F. W. Sears and G. L. Sallinger, Neurose Dublishing Heures (1975)			
Narosa Publishing House (1975). Heat and Thermodynamics R H Dittman and M W Zamansky McCraw Hill (2017)			
Reference Books			
1. An Introduction to Thermal Physics, D. V. Schroeder, Oxford University Press (2021).			

DSC	DSC Digital Electronics	L	Τ	P	C	
		4	0	0	4	
Pre-requisite: Ba	usic Physics and Mathematics					
Course Objective	es:					
1. To teach students the basics of digital circuits and Boolean algebra.						
2. To learn different concepts associated with arithmetic circuits and sequential circuits.						
3. To make s	students familiar with microprocessor architecture.					
Course Outcome	:					
After successful c	completion of the course, the students will be able to					
CO 1: Understand the working principle of CRO, data processing circuits, arithmetic circuits and						
sequential circuit	S.					
1						
CO 2: Develop a	digital logic and apply it to solve real life problems.					
1						
CO 3: Gain an un	derstanding of microprocessor architecture.					
Module 1: INTR	UDUCTION TO CRO		4	hour	S	
Block Diagram o	f CRO, Electron Gun, Deflection System and Time Base, Deflect	tion S	ensit	ivity.	,	
Applications of C	CRO: (1) Study of Waveform, (2) Measurement of Voltage, Curre	ent, Fi	eque	ncy.	and	
Phase Difference		,	1	5		
Module 2: DIGI	TAL CIRCUITS		1	2 hou	ars	
Difference betwe	een analog and digital circuits, binary numbers. decimal to bir	ary a	and k	inar	y to	
					,	

decimal conversion, BCD, octal and hexadecimal numbers. AND, OR and NOT gates, NAND and NOR gates as universal gates, XOR and XNOR gates.

Module 3: BOOLEAN ALGEBRA

De Morgan's Theorems, Boolean laws, simplification of logic circuit using Boolean Algebra, fundamental products, idea of minterms and maxterms, conversion of a Truth table into equivalent logic circuit by (1) Sum of Products Method and (2) Karnaugh Map.

Module 4: ARITHMETIC CIRCUITS

Binary addition, binary subtraction using 2's complement, Half and Full adders, Half & Full subtractors, 4-bit binary adder/subtractor.

Module 5: SEQUENTIAL CIRCUITS

SR, D, and JK Flip-Flops, clocked (Level and Edge Triggered) Flip-Flops, Preset and Clear operations, race-around conditions in JK Flip-Flop, M/S JK Flip-Flop.

Module 5: TIMERS

IC555: Block diagram and applications: Astable multivibrator and Monostable multivibrator.
Module 7: SHIFT REGISTERS 6 hours

Serial-in-Serial-out. Serial-in-Parallel-out.Parallel-in-Serial-out and Parallel-in- Parallel-out Shift Registers (only up to 4 bits).

Module 8: INTRODUCTION TO MICROPROCESSORS

8085 Microprocessor Architecture: Main features of 8085. Block diagram. Components, Pin-out diagram. Buses, Registers, ALU, Memory, Stack memory and Timing. [1] Introduction to Assembly Language: 1-byte, 2-byte and 3-byte instructions.

Total Lecture hours 60 hours **Text Book(s)** Digital Principles and Applications, A.P.Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata 1. **McGraw** Modern digital Electronics, R. P. Jain, McGraw Hill Education, 4th Edition. 2. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill. 3. **Reference Books** Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill. 1. Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, 2. Prentice Hall.

DSC	DSC Ouantum Mechanics	L	Τ	Р	C
DSC	Quantum Mechanics	4	0	0	4
Pre-requisite	Basic Physics and Mathematics				
Course Object	ctives:				
1. To lan	1. To land on an area of new formalism of physics i.e., quantum mechanics needed to				
understand few critical events observed between 1900 and 1925					
2. To pro	2. To provide knowledge of time dependent and time independent Schrodinger Equation.				
3. To ena	able students to learn different aspects of Bound States.	_			
4. To ma	ke students familiar with quantum theory of hydrogen-like atoms.				

10 hours

10 hours

6 hours

8 hours

4 hours

- To learn different concepts associated with atoms in electric and magnetic fields. 5.
- To provide knowledge about Quantum Mechanical aspects of many-electron atoms. 6.

Course Outcome:

After successful completion of the course, the students will be able to

CO1: Apply time dependent and time independent Schrodinger Equation to solve simple problems.

CO 2: Learn the basics of Bound States and their applications.

CO 3: Understand different Quantum Mechanical aspects of hydrogen-like atoms.

CO 4: Apply the knowledge of atoms in electric and magnetic fields to solve simple problems.

CO 5: Acquire knowledge about Quantum Mechanical aspects of many-electron atoms.

Module 1: EMERGENCE OF QUANTUM MECHANICS

Introduction to some critical events in physics observed between 1900 to 1925 that led to some radical theoretical proposals (called quantum theory) beyond accepted classical physics. Blackbody radiation, photoelectric effect, the Compton effect, wave properties and electron diffraction, the Bohr atom, the correspondence principle.

Module 2: WAVE MECHANICS: THE SCHRODINGER EQUATION

15 hours

5 hours

Wave-Particle duality and concept of wave function, plane waves and wave packets, Probability Interpretation of Wave Function, the Schrodinger equation, the Heisenberg uncertainty relation: more on the probability interpretation of wave function: importance of phases, probability current densities, conditions for physical acceptability of wave functions, normalization, linearity and superposition principles; expectation values and the momentum in wave mechanics, momentum operator, wave function in momentum space, Wave Function of a Free Particle.

Module 3: TIME INDEPENDENT SCHRODINGER EQUATION (IN ONE	20 hours
DIMENSION)	

Time independent Schrodinger equation, eigenvalue equations and problem for a particle in a box, the expansion postulate and its physical interpretation, momentum eigenfunction and the free particle, normalization of free particle wave function, degeneracy and parity; some more applications to one dimensional potentials- (i) potential step, (ii) potential well with E>0 and E<0 for bound states, (iii) potential barrier and tunneling effect and (iv) harmonic oscillator.

General structure of wave mechanics: eigenfunctions and eigenvalues, Hamiltonian operator, some properties eigenvalues and eigenfunctions, Position, momentum and Energy operators; commutator of position and momentum operators, energy eigenfunctions, arbitrary wavefunction as a linear combination of energy eigenfunctions

Module 4: THE SHRODINGER EQUATION IN 3 DIMENSIONS	5 hours		
Schrodinger equation in spherical polar coordinates; separation of variables of wavefunctions in			
central potential (radial and angular parts); application to hydrogen atom, its energy	spectrum,		
degeneracy of the spectrum and origin of quantum numbers n, l and m [qualitatively	/ introduce		
angular solution $Y_{lm}(\theta, \phi)$], plots of radial and angular probability distribution in conver	nient forms		
upto second excited states.			
Module 5: ATOMS IN ELECTRIC AND MAGNETIC FIELDS	8 hours		
Electron angular momentum. Angular momentum quantization. Electron Spin and Spin Angular			
Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Normal and			
Anomalous Zeeman Effect, Paschen Back Effect, Electron Magnetic Moment and Magnetic Energy,			
guyromagnetic ratio, Bohr magneton			
Module 6: MANY ELECTRON ATOMS	7 hours		
Pauli's Exclusion Principle. Symmetric and Anti-symmetric Wave Functions. Spin orbi	t coupling.		
Spectral Notations for Atomic States. Total angular momentum. Vector Atom Model, Spin-orbit			
coupling in atoms-L-S and J-J couplings, Hund's rule, Term symbol, spectra of hydrogen and alkali			
atom.			
Total Lecture hours	60 hours		

ov nours

Tex	t Book(s)
1.	A Text book of Quantum Mechanics, P.M.Mathews and K.Venkatesan, 2nd Ed., 2010,
	McGraw Hill
2.	Quantum Mechanics: Theory and Applications, (2019), (Extensively revised 6th Edition),
	Ajoy Ghatak and S. Lokanathan, Laxmi Publications, New Delhi.
3.	Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
4.	Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
5.	Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
Ref	erence Books
1.	Introduction to Quantum Mechanics, D.J. Griffith, 2 nd Edition, Pearson Education, 2005
2.	Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
3.	Quantum Mechanics: Foundations & amp; Applications, Arno Bohm, 3rd Edn., 1993,
	Springer
4.	Quantum Mechanics for Scientists & amp; Engineers, D. A. B. Miller, 2008, Cambridge
	University
	Press

DSC	Thormal Dhyging Lab	Т	Т	D	C
DSC	I nermai Physics Lad		1	r	
		0	0	4	2
Prerequisit	e : Basics of 12 standard Physics lab				
Course Obj	ective :				
1) This cou	rse aims to provide a good platform to mechanical engineering s	tude	nts to)	
understa	nd model and appreciate concept of dynamics involved in them	nale	nergy	7	
transform	nation				
				. 1	1.
2) Students	will apply the analytical techniques and graphical analysis to the	e exp	erim	ental	data.
3) To develop intellectual communication skills and discuss the basic understanding of various					
Commenta					
Course Out	come:		• •		
COI: To ap	ply the knowledge of mathematics, physics to understand the m	lecha	nıcal		
equiv	alent of heat and thermal conductivity phenomenon				
CO2: Abili	ty to understand the basic concepts of thermodynamic such as te	empe	ratur	e,	
pressi	ire, system, properties, process, state, cycles and equilibrium.			_	
СО3: То	get the knowledge of Thermocouple, Calorimeter and	Plati	num	resis	stance
thermometer	ſ.				
CO4: This	CO4: This lab will help the students to understand specific heat and convection of heat in			1	
various envi	ronment.				
List of Exp	eriments :				
1) 7	o determine Mechanical Equivalent of Heat, J, by Joule's Calorime'	ter m	etho	d	
2) 7	'o determine the Coefficient of Thermal Conductivity of Cu by Sear	rle's A	Appa	ratus	
3) 1	3) To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee			Lee	
a	nd Charlton's disc method				
4) 1	'o determine the Temperature Coefficient of Resistance by	Р	latinı	ım	
F	Resistance Thermometer (PRT).				
5) 1	'o study the variation of Thermo-EMF of a Chromium – Aluminium	n The	rmo	coupl	e with
l I	Difference of Temperature of its Two Junctions.				
6) 1	'o find the specific heat of a liquid by using Calorimeter				

- 7) To measure the emissivity of test plate.
- 8) To find the Stefan's constant.
- 9) Evaluate the Specific Heat of Air at constant pressure.
- **10)** To determine average surface heat transfer coefficient for a pipe by forced convection.

Total Hours:

60 hours

Textbooks:

- 1) 1) A TEXT BOOK ON PRACTICAL PHYSICS: K.G. MAZUMDAR & B.GHOSH.
- 2) A TEXT BOOK ON PRACTICAL PHYSICS: Dr. SAMIR KUMAR GHOSH.
- 3) ADVANCED PRACTICAL PHYSICS FOR STUDENTS, B. L. FLINT AND H.T. WORSNOP, 1971, ASIA PUBLISHING HOUSE
- 4) A TEXT BOOK OF PRACTICAL PHYSICS, I.PRAKASH & RAMAKRISHNA, 11THED., 2011, KITAB MAHA

Prerequisite : Basics of 12 standard Physics lab Course Objective : 1) To develop problem solving and critical thinking skills by observing various practical outcomes for further applications. 2) To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate technical equipments. 3) Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology 4) The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. 1) To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 2) To study and verify the truth table of logic gates 3) To design a switch (NOT gate) using a transistor. 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Bolean expression into logic circuit and design it using logic gate ICs. <th>DSC</th> <th>Digital Electronics Lab</th> <th>L</th> <th>T</th> <th>P</th> <th>C</th>	DSC	Digital Electronics Lab	L	T	P	C
 Prerequisite : Basics of 12 standard Physics fab Course Objective : 1) To develop problem solving and critical thinking skills by observing various practical outcomes for further applications. 2) To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate technical equipments. 3) Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology 4) The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : 1) To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 2) To study and verify the truth table of logic gates 3) To design a switch (NOT gate) using a transistor. 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	D	· Device of 12 standard Dhavier lab	0	0	4	2
 To develop problem solving and critical thinking skills by observing various practical outcomes for further applications. To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate technical equipments. Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology. The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: Col: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	Course Obi	e : Basics of 12 standard Physics lab				
 To develop problem solving and critical thinking skills by observing various practical outcomes for further applications. To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate technical equipments. Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: Col: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	Course Obj					
 To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate technical equipments. Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	1) To development outcomes for	elop problem solving and critical thinking skills by observit	ng v	ariou	s pra	octical
 3) Design of circuits using new technology and latest components and to develop practical applications of physics materials and use of principle in the right way to implement the modern technology 4) The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : 1) To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 2) To study and verify the truth table of logic gates 3) To design a switch (NOT gate) using a transistor. 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	2) To achie bring mo	ve perfectness in experimental skills and the study of practic ore confidence and ability to develop and fabricate technical equ	cal a ipme	pplic ents.	ation	s will
 4) The students will have a good foundation in the fundamentals related to the experiments included in this course and their advanced applications. Course Outcome: CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	3) Design applicati modern	of circuits using new technology and latest components and ons of physics materials and use of principle in the right wa technology	to de ay to	evelo imp	p præ leme	nctical nt the
Course Outcome: CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : 1) To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 2) To study and verify the truth table of logic gates 3) To design a switch (NOT gate) using a transistor. 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Boolean expression into logic circuit and design it using logic gate ICs.	4) The stu included in t	idents will have a good foundation in the fundamentals related his course and their advanced applications.	d to	the e	xperi	ments
 CO1: Learning basic concept of voltage, current and measurement of their readings in CRO. CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	Course Out	come:				
 CO2: Get the knowledge of various logic gates such as OR, NOT, NAND. CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	CO1: Lear	ning basic concept of voltage, current and measurement of their	read	ings	in CF	RO.
 CO3: To enhance the knowledge of working principle of various flip-flops CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	CO2: Get t	he knowledge of various logic gates such as OR, NOT, NAND.				
 CO4: The course will help to understand the concept of OPAMP in inverting and non-inverting and buffer mode. List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	CO3: To er	hance the knowledge of working principle of various flip-flops				
 List of Experiments : To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	CO4: The cand buffer m	course will help to understand the concept of OPAMP in invertine node.	ng an	d noi	n-inv	erting
 To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. To study and verify the truth table of logic gates To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	List of Exp	eriments :				
 2) To study and verify the truth table of logic gates 3) To design a switch (NOT gate) using a transistor. 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	1) To mea	sure (a) Voltage, and (b) Time period of a periodic waveform usin	ng CF	RO.		
 To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	2) To stud	ly and verify the truth table of logic gates				
 4) To verify and design AND, OR, NOT and XOR gates using NAND gates. 5) To design a combinational logic system for a specified Truth Table 6) To convert a Boolean expression into logic circuit and design it using logic gate ICs. 	3) To des	ign a switch (NOT gate) using a transistor.				
5) To design a combinational logic system for a specified Truth Table6) To convert a Boolean expression into logic circuit and design it using logic gate ICs.	4) To veri	fy and design AND, OR, NOT and XOR gates using NAND gates.				
6) To convert a Boolean expression into logic circuit and design it using logic gate ICs.	5) To des	ign a combinational logic system for a specified Truth Table				
	6) To con	vert a Boolean expression into logic circuit and design it using log	ic ga	te ICs		

7) Half Adder, Full Adder and 4- bit binary Adder

8) To build Flip - Flop (RS, Clocked RS, D - type and JK) circuits using NAND gates.

9) To construct inverting voltage amplifier and to determine the close loop voltage gain

10) To construct inverting voltage amplifier and to determine the close loop voltage gain

To construct a buffer amplifier using IC 741 and to determine voltage gain.

Total Hours:

60 hours

Textbooks:

- 1) A TEXT BOOK ON PRACTICAL PHYSICS: K.G. MAZUMDAR & B.GHOSH
- 2) A TEXT BOOK ON PRACTICAL PHYSICS: Dr. SAMIR KUMAR GHOSH
- 3) ADVANCED PRACTICAL PHYSICS FOR STUDENTS, B. L. FLINT AND H.T. WORSNOP, 1971, ASIA PUBLISHING HOUSE
- 4) A TEXT BOOK OF PRACTICAL PHYSICS, I.PRAKASH & RAMAKRISHNA, 11THED., 2011, KITAB MAHA

DSE III	Plasma Physics	L	T ^	P	C
D		4	0	0	4
Pre-requisite:	Electromagnetic Theory				
Course Objec			.1		• 1
1. To delive	r a comprehensive course on the basics of plasma physic	es, th	e th	eoret	ical
modelling, th	e instabilities and the applications of plasma.				
2. To dissem	inate lectures on the physics behind the motion of charged part	icles	in E	M fi	elds
and how this	forms the basis of theoretical modelling of plasma.				
3. To give the	students a view of why the two-fluid model of plasma forms the maj	or foi	ındati	ion of	the
numerous pher	nomena associated with it.				
4. To analyze	how the motion of charged particles in plasma leads to the emergen	ce of	plasr	na wa	ives
and instabilitie	s in the plasma.				
Course Outco	me:				
After successf	ul completion of the course, the students will be able				
CO 1: to under	stand the basic properties and conditions for a mixture of ions to be p	lasma	l.		
CO 2: to analy	ze the motion of charged particles in uniform and non-uniform EM f	ields	and u	ising	this,
build an under	standing of the fluid model of plasmas.				
CO 3: to com	prehend the physics behind the numerous waves that arise in plas	ma si	ich a	s Alf	ven,
Magneto-Acou	istic and Ion-Acoustic waves and the implications of dusty plasma i	n spa	ce pl	asma	and
the mesospher	the mesosphere of the earth.				
CO 4: to gain	CO 4: to gain in-depth of the instabilities in plasma such as two-stream instability and the applications				
of plasma in the biomedical sector and material sciences.					
Nodule 1: Ba	sics of Plasma Physics			D10	JULS
Basic Proper	ties of Plasma, Quasi-neutranty, Debye Smelding, Plasma F	reque	ency,	, Pla	sina
Parameter, Criteria for Plasma, Plasma Production in Laboratory: Glow Discharge Plasma and				and	
Pachen Law, Magnetically Confined Open and Closed systems (linear pinch, mirror machine					
and Tokamak).					
Module 2: Sir	gle Particle Motion and Fluid Description of Plasma		2	20 ho	urs
Concept of I	Lorenz Force, Charged particle motion in uniform and non-u	nifori	n EN	M fie	lds,
Electric and Grad-B Drift, Curvature Drift and Magnetic Mirrors, Adiabatic Invariants - µ and					
J, Coulomb collisions, Characteristic Relaxation Times, Fluid Description of Plasma - Two					
Fluid Model, The Plasma Approximation.					

Module 3: Wa	ves in Plasma		1	15 ho	urs
Group veloci	ty and Phase velocity, Normal Mode Analysis, Plasma Os	cillati	ions,	Alf	ven
waves, Dissi	pative Effect, Magneto-acoustic Waves, Hydro-magnetic W	aves,	Lin	iear	and
Nonlinear Ior	-Acoustic Waves and Electron Plasma Wave.				
Module 4: In	stabilities and Applications of Plasma		1	0 ho	urs
Magneto-hydi	odynamic instabilities- Rayleigh-Taylor and Kelvin Helmh	ıoltz	inst	abili	ties,
Industrial Apr	lications - Biomedical and Material sciences, Thermonuclear Fusi	on an	d IT	ER.	,
Textbook (s)	· · · · · · · · · · · · · · · · · · ·				
1. Introduction	on to Plasma Physics and Controlled Fusion, Francis F. Chen, Springe	r Natu	ire 3 ¹	rd Edi	tion
(2015).	(2015).				
2. Physics of	Fluids and Plasmas, Arnab Rai Choudhuri, Cambridge University Press	s (1998	i).		
3. Fundamen	tals of Plasma Physics, J. A. Bittencourt, Springer-Verlag New York (20)10).			
Reference Bo	ks				
1. Introduction	on to Plasma Physics, R. J. Goldston, CRC Press (2020).				
_ ~		L	Т	Р	С
DSE III	Spectroscopy	4	0	0	4
Pre-requisite:	Ouantum Mechanics.		U	•	
Course Objec	tives:				
1. To impart	a comprehensive course on the physics of molecular spe	ctrosc	copy	and	its
applications in unveiling the molecular structure of substances					
2. To disseminate lectures on the applications of quantum mechanics (specifically the rigid					
2. To disseminate rectures on the applications of quantum mechanics (specifically the fight					
2. To evolute the connection between the melecular properties of meterials and the numerous types of					
3. To evaluate the connection between the molecular properties of materials and the numerous types of					
spectroscopies that could be applied to study its properties.					

Course Outcome:

After successful completion of the course, the students will be able

CO 1: to understand the basics of the physical principles that the spectroscopic methods are based on.

CO 2: to analyze the spectral properties of molecules by understanding the basics of rotational and vibrational spectroscopy.

CO 3: to comprehend the physics behind Electronic Spectroscopy and the famed Raman effect and its applications in molecular spectroscopy.

CO 4: to understand the important properties associated with the molecular structure materials.

Module 1: Basics of Spectroscopy

Interaction of electromagnetic radiation with molecules, Various types of spectra, Born-Oppenheimer approximation, Franck-Condon principle and Free Electron Model.

5 Hours

Module 2: Atomic Spectroscopy15 hoursPauli's Exclusion Principle, Spectral Terms, Vector Model for Three or more Valence Electrons atoms,
Branching Rule, Landé Interval Rule, LS and JJ Coupling, Energy Levels and Selection Rules, Spectra
of Oxygen and Nitrogen, Zeeman Effect, Paschen-Bach effect, Stark Effect and Hyperfine Structure.20 hours

Rotational Spectroscopy: Selection Rules, Intensities of Spectral Lines, Determination of Bond Lengths of Diatomic and Linear Triatomic Molecules, Isotopic Substitution.

Vibrational Spectroscopy: Classical Equation of Vibration, Computation of Force Constant, Anharmonicity, Morse Potential, Dissociation Energies, Fundamental Frequencies, Overtones, Hot Bands, Degrees of Freedom for Polyatomic Molecules, Modes of Vibration, Concept of Group Frequencies.

Module 4: Electronic and Raman Spectroscopy	20 hou	irs		
Electronic Spectroscopy: Electronic Transitions, Singlet and	Triplet States, Fluorescence a	and		
Phosphorescence, Dissociation and Predissociation, Calculation of Electronic Transitions of Polyenes				

using Free Electron Model.

Raman Spectroscopy: Qualitative Treatment of Rotational Raman Effect; Effect of Nuclear Spin	1,				
Vibrational Raman Spectra, Stokes and Anti-Stokes lines, Selection Rules.					
Textbook (s)					

1. Atomic and Molecular Spectroscopy: Basic Concepts and Applications, Rita Kakkar, Cambridge University Press (2015).

- 2. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles 2nd Edition, Robert Resnick and Robert Eisberg, Wiley (2007).
- 3. Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules Vol.1, , Gerhard Herzberg, Krieger Publishing Company (1989).

Reference Books

- 1. Introduction to Spectroscopy, D. L. Pavia, Cengage India Pvt. Ltd. (2015).
- 2. Molecular Structure and Spectroscopy, G. Arulhas, Prentice Hall India (2007).