

# **DEPARTMENT OF CHEMISTRY**

## **Ph.D.** Course Work

### Syllabus



#### Ph.D. Programme in Chemistry

| Course<br>Code  | Course Name                             | Course Type                         | Hours per Week |   |   |   |
|-----------------|-----------------------------------------|-------------------------------------|----------------|---|---|---|
|                 |                                         |                                     | L              | Т | Р | С |
|                 | Characterization<br>Techniques          | Paper III-Elective Course<br>DSC-I  | 3              | 0 | 0 | 3 |
|                 | Green and<br>Environmental<br>Chemistry | Paper IV, Elective Course<br>DSC-II | 3              | 0 | 0 | 3 |
| Total Credit -6 |                                         |                                     |                |   |   |   |



GIRIJANANDA CHOWDHURY UNIVERSITY

Hathkhowapara, Azara , Guwahati 781017, Assam

|                |                                                                           | Т      | т             | D             | C      |
|----------------|---------------------------------------------------------------------------|--------|---------------|---------------|--------|
|                | <b>Characterization Techniques</b>                                        | L<br>3 | <u>T</u><br>0 | <u>Р</u><br>0 | C<br>3 |
| Pre-requisite: | Knowledge of M.Sc. level Chemistry                                        |        | v             | v             |        |
| Course Objec   |                                                                           |        |               |               |        |
|                | ovide knowledge of different spectroscopic techniques and th              | neir a | ppli          | catio         | n in   |
| resear         | ch.                                                                       |        |               |               |        |
| 2. To p        | rovide knowledge on surface characterization through van                  | rious  | mic           | rosco         | opic   |
| techni         | que.                                                                      |        |               |               |        |
| 1              | rovide knowledge on thermal characterization techniques.                  |        |               |               |        |
| -              | ovide knowledge on X-Ray Diffraction (XRD).                               |        |               |               |        |
|                | ovide knowledge on electrical and mechanical properties of mat            | erials | 5.            |               |        |
| Course Outc    |                                                                           |        |               |               |        |
| After success  | ful completion of the course, the students will be able                   |        |               |               |        |
|                | perform structural characterization using the knowledge of var            | ious : | spect         | rosc          | opic   |
| technique      |                                                                           |        |               |               |        |
|                | xplain surface morphology of samples using microscopic techn              |        |               |               |        |
|                | explain the thermal stability of compounds via various                    | ther   | mal           | anal          | ysis   |
| technique      |                                                                           |        |               |               |        |
| -              | redict crystalline properties of samples through XRD analysis             |        |               |               |        |
|                | nalyze electrical and mechanical properties of materials.                 |        | 1             | 21            |        |
|                | PECTROSCOPIC TECHNIQUES                                                   |        |               | <u>2 ho</u>   |        |
|                | fluorescence spectroscopy. Characterization of molecules, nstrumentation. | appii  | catio         | ons,          | Jata   |
| •              | oscopy, Raman spectroscopy, their applications in charac                  | torizi | na            | cham          | ical   |
|                | ta analysis and instrumentation.                                          | UTIZI  | ing v         | chen          | Ical   |
|                | scopy, X-Ray photoelectron spectroscopy and their application             | tions  | in s          | struct        | ural   |
|                | on. Data analysis and instrumentation.                                    | .10115 | in c          | , ii ao i     | arai   |
|                | scopy, applications in characterizing chemical structures,                | data   | anal          | vsis          | and    |
| instrumentatio |                                                                           |        |               | <i>,</i>      |        |
|                | ICROSCOPY                                                                 |        | 1             | 2 ho          | urs    |
|                | samples using Scanning electron microscopy (SEM), Tran                    | smis   |               |               |        |
|                | TEM), Scanning probe microscopy (AFM, STM). Instrumentati                 |        |               |               |        |
| Module 3: T    | HERMAL ANALYSIS                                                           |        | 6             | hou           | rs     |
| Thermo grav    | vimetric analysis (TGA), Differential thermal analysis (D                 | TA),   | Di            | fferei        | ntial  |
| scanning calo  | primetric (DSC), Dynamic mechanical thermal analysis (DMT                 | `A). ] | Data          | anal          | ysis   |
| and instrumen  | ntation.                                                                  |        |               |               |        |
| Module 4: X    | -RAY DIFFRACTION                                                          |        | 8             | hou           | rs     |
| Powder XRD     | , single crystal XRD. Data analysis and Instrumentation.                  |        |               |               |        |
| Module 5: E    | LECTRICAL AND MECHANICAL ANALYSIS                                         |        | 7             | hou           | *S     |
| Resistivity m  | easurements, two-probe, four-probe measurements, stress-st                | rain   | profi         | les o         | of     |
|                | tals and polymers, measurement of tensile strength, flexur                |        |               |               |        |
| compressive    |                                                                           |        | 0             |               |        |
| Total Lectur   |                                                                           |        | 4             | 5 ho          | urs    |
|                |                                                                           |        |               |               |        |
|                |                                                                           |        |               |               |        |
|                |                                                                           |        |               |               |        |
| Text Book(s)   |                                                                           |        |               |               |        |



#### GIRIJANANDA CHOWDHURY UNIVERSITY

Hathkhowapara, Azara , Guwahati 781017, Assam

| 1                 | Vogels Inorganic Qualitative Analysis, Arthur Vogel and G. Svehla, Pearson 2009.                                 |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2                 | D. B. Murphy, M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, Wiley, 2013.              |  |  |  |  |
| 3                 | D. B. Williams, C. B. Carter, Transmission Electron Microscopy A Textbook for Materials Science, Springer, 2009. |  |  |  |  |
| Reference book(s) |                                                                                                                  |  |  |  |  |
| 1                 | A. R. West, Solid State Chemistry and Application, Wiley Student Edition, 1998.                                  |  |  |  |  |
| 2                 | B. D. Cullity, Elements of X-Ray Diffraction, 3rd Edition, Addison Wesley Publishing Company, Inc., 2004.        |  |  |  |  |



Hathkhowapara, Azara , Guwahati 781017, Assam

|                               | Green and Environmental Chemistry                                                                                                                            | L     | Τ              | Р      | С     |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--------|-------|
| <b>D</b>                      |                                                                                                                                                              | 3     | 0              | 0      | 3     |
|                               | e: M.Sc. knowledge in Chemistry                                                                                                                              |       |                |        |       |
| Course Object                 | e insights of green chemistry and sustainability.                                                                                                            |       |                |        |       |
| -                             | e knowledge on the atmospheric chemistry, air pollution and pre                                                                                              | vent  | ion e          | etc    |       |
|                               | e knowledge on the chemistry of soil.                                                                                                                        | v ent | 1011, <b>C</b> |        |       |
| -                             | e knowledge on the chemistry of water.                                                                                                                       |       |                |        |       |
| Course Out                    |                                                                                                                                                              |       |                |        |       |
| After success                 | sful completion of the course, the students will be able                                                                                                     |       |                |        |       |
| CO1: To und                   | lerstand the principles of green chemistry and environmental che                                                                                             | mist  | ry             |        |       |
|                               | e an insight of the chemistry of atmosphere, different causes of a                                                                                           |       | -              | on.    |       |
|                               | ve an insight of the chemistry of soil, different causes of soil p                                                                                           | -     |                |        | rent  |
|                               | o monitor soil quality, etc.                                                                                                                                 |       | )              |        |       |
| -                             | e an insight of the chemistry of water, different causes of water                                                                                            | oollu | tion,          | etc.   |       |
| Module 1: C                   | <b>GREEN CHEMISTRY</b>                                                                                                                                       |       | 12             | hour   | 'S    |
|                               | of green chemistry and sustainability; principles of green chemistry                                                                                         |       |                |        |       |
|                               | es of each principle. Green chemistry matrices. Solvent free                                                                                                 |       |                |        |       |
|                               | sonochemical synthesis; microwave assisted synthesis; use of                                                                                                 |       |                | lvent  | s in  |
| chemical syn                  | thesis. Recent progress on green chemistry with real world exam                                                                                              | ples  | •              |        |       |
| Carlage                       | for a transient and a surgery to use days a the surgery                                                                                                      |       |                |        |       |
|                               | footprint and ways to reduce them.                                                                                                                           |       | 12             | hour   |       |
| chemical con<br>ions and radi | & atmospheric chemistry, importance of the atmosphere, solar<br>mposition of atmosphere, photochemical and chemical reaction<br>cals in the atmosphere.      | ns ir | n atm          | losph  | iere, |
|                               | diation and plant and animal life, stratospheric ozone, ozone fo<br>ction reactions, antarctic and arctic ozone hole.                                        | rmat  | ion r          | eacti  | ons,  |
| -                             | c air pollutants, control of particulate emissions, carbon o<br>pher dioxide and sulpher cycle, nitrogen oxides in atmosphere, a                             |       |                | -      | obal  |
|                               | air pollutants: examples, smog, types of smog, photochem<br>tions of organic compounds mechanism of smog formation effect                                    |       |                |        | nog   |
|                               | change, International agreements/efforts on climate change- N<br>Kyoto protocol, Paris agreement, International Solar Alliance.                              | Aont  | real j         | proto  | col,  |
| Module 3: C                   | CHEMISTRY OF SOIL                                                                                                                                            |       | 6 h            | nour   | 5     |
| Soil for                      | mation- physical weathering and chemical weathering, soi                                                                                                     | l or  | ganic          | ma     | tter, |
| formation, en                 | operties of soil- cation exchange cap., pH, macro and micron<br>nvironmental issues associated with soils- nutrient leaching, aci<br>y, metal contamination. |       |                |        |       |
| Module 4: C                   | CHEMISTRY OF WATER                                                                                                                                           |       | 6 h            | nour   | 5     |
|                               | tion of chemical species in water, phosphorus and sulphur sys                                                                                                | stem  |                |        |       |
| alkalinity, ch                | elation in water, humic matter in water-origin, formation and en<br>of small organic molecules between water and soil or sedimen                             | nvirc | nmei           | ntal 1 | ole.  |
| -                             | ollution, inorganic pollutants, organic pollutants, eutrophication                                                                                           | , rad | io-nu          | clide  | s in  |



Hathkhowapara, Azara , Guwahati 781017, Assam

aquatic environment. Module 5: SEMINARS, GROUP DISCUSSION ON HOME ASSIGNMENTS 9 hours RELATING TO RECENT RESEARCHES ON ENVIRONMENT AND **GREEN CHEMISTRY, INTERNAL ASSESSMENT Total Lecture hours** 45 hours Text Book(s) S.E. Manahan, Fundamentals of Environmental Chemistry, Lewis Publishers 1. G. W. Vanloon, S. J. Duffy, Environmental Chemistry, 3rd Edison, Oxford University 2. Shivangi Sonvanshi, Renu Dhupper, Fundamentals of Environmental Studies 3. **Reference Book(s)** Ritu Bir, Environmental Studies 1. J.P. Sharma, Environmental Studies 2. Sankar P. Dey, Nayim Sepay, A Textbook of Green Chemistry 3. Bailey, Clark, Ferris, Krause and Strong, Chemistry of Environment 4.