COURSE STRUCTURE OF M.Sc. (PHYSICS) UNDER GIRIJANANADA CHOWDHURY UNIVERSITY

A) Credit distribution for various courses in all four semesters:

Semester		Core Courses			Department Specific Elective(DSE)		Ор	en Elective (OE)		Internship	Project	SEC	Total Credits
	No. of Courses	Credits (L+T+P)	Total Credits	No. of Courses	Credits (L+T+P)	Total Credits	No. of Courses	Credits (L+T+P)	Total Credits	Total Credit	Credits	Total Credits	
Ι	4	9+3+12	18	0	0	0	1	3+0+0	3	0	0	0	21
II	5	12+4+12	22	0	0	0	0	0	0	0	0	0	22
III	2	3+1+8	8	2	6+2+0	8	0	0	0	3	0	3	22
IV	2	6+2+0	8	2	6+2+0	8	0	0	0	0	8	0	24
ח	Fotal Credi	ts for Core (Courses	1	1	1	1		1		1		56
]	Fotal Credi	its for Depar	tment Spe	cific Elect	ive Course	es							16
1	Fotal Credi	its for Depar	tment Ope	en Elective	Courses								3
7	Fotal Credi	its for Intern	ship										3
	Total Credi	its for Projec	ct Courses										8
n	Fotal Credi	its for Skill I	Enhancem	ent Course	2S								3
(Grand Tot	tal Credits											89

B) Course Structure in Semester I

Total number of Core Course:5 (No Elective	Credits in Core Courses							
Course is offered in this Semester) MPY	Lecture (L)	Tutorial (T)	Practical(P)	Total Credits				
Mathematical Physics	3	1	0	4				
Classical Mechanics	3	1	0	4				
Quantum Mechanics	3	1	0	4				
OEC	3	0	0	3				
General Lab	0	0	12	6				
Total Credits in Semester I				21				

C) Course Structure in Semester II

Total number of Core Course:5 (No Elective	Credits in Cor	e Courses		
Course is offered in this Semester)	Lecture(L)	Tutorial(T)	Practical(P)	Total Credits
Atomic and Molecular Physics	3	1	0	4
Condensed Matter Physics	3	1	0	4
Statistical Mechanics	3	1	0	4
Nanomaterials	3	1	0	4
General Lab II	0	0	12	6
Total Credits in Semester II	1			22

D) Course Structure in Semester III

	Credits in Cor	e/Elective Cou	rses	
Course :2 Fotal number of DSE Course 2	Lecture (L)	Tutorial (T)	Practical (P)	Total Credits
nternship: 1 SEC: 1				
Electronics	3	1	0	4
SEC	3	0	0	3
Gen Lab III	0	0	8	4
DSE1	3	1	0	4
DSE2	3	1	0	4
Internship			•	3
Fotal Credits in Semester III				22

E) Course Structure in Semester IV

Semester IV

Total number of DSE Course :2	Credits in DSE/OE/Project Courses							
No. of Projects:1	Lecture (L)	Tutorial (T)	Practical (P)	Total Credits				
Electromagnetic Theory and Electrodynamics	3	1	0	4				
Nuclear and Particle Physics	3	1	0	4				
DSE3	3	1	0	4				
Project	0	0	16	8				
DSE4	3	1	0	4				
Cotal Credits in Semester I	V	<u> </u>		24				

F) Department Specific Elective (DSE) Courses to be offered:

Semester III (DSE1)

Any two of the following courses are to be selected (If 1 is opted for DSE 1, then 1 has to be again opted for DSE 2, similarly for other course)

- 1. Course Name: Material Synthesis & Characterizations
- 2. Course Name: Advance Electronics

Semester III (DSE2)

- 1. Course Name: Thin Films Phenomena.
- 2. Course Name: Network Analysis & Microwave Electronics.

Semester IV (DSE3)

Any two of the following courses are to be selected (If 1 is opted for DSE 1, then 1 has to be again opted for DSE 2, similarly for the other course)

- 1. Course Name Laser & Spectroscopy
- 2. Course Name General Theory of Relativity & Cosmology

Semester IV (DSE4)

- 1. Course Name Nonlinear Optics
- 2. Course Name High Energy Physics

Open Elective (OE) Courses to be offered

1. Data Science and Machine Learning

DETAILED SYLLABI:

SEMESTER-I

		L	Т	Р	С
DSC	MATHEMATICAL PHYSICS	<u> </u>	<u> </u>	0	<u> </u>
Pro-requisite:	Graduation level Mathematics and Physics	3	1	U	4
Course Objec					
v	wide fundamental knowledge of complex variables.				
	ble students to learn different properties of Fourier and Laplace Tra	ansforr	ns.		
	ke students familiar with elementary probability theory and the fund			group	
theory				0 1	
4. To pro	vide knowledge about tensors and their applications.				
-	vide knowledge about special functions used in Physics.				
Course Outco					
After successf	ul completion of the course, the students will be able to				
CO1: Understa	nd the fundamentals of complex variables, Fourier and Laplace transfo	orms, P	robabi	lity the	ory,
· ·	nd special functions				
	he knowledge of complex variables, probability theory, Fourier and Lag	place t	ransfor	m to s	olve
simple problem					
	and the properties of Tensors and apply them in different areas of Phys	ICS.			
	er the properties of special functions. MPLEX VARIABLES		15 U	lours	
	of One-Electron Atoms – Mass Correction, Spin-Orbit and Darwin Te	rme F			ric and
	s: Zeeman, Paschen-Bach and Stark Effects, Ground State of Two-Elec				
U U	riational Methods, LS and JJ Coupling, Lande Interval and Selection Ru				
Broadening.	rational methods, 25 and 5 Coupling, Danae met val and Selection re		51115101	i una D	oppier
	URIER AND LAPLACE TRANSFORMS		8 ho	urs	
Fourier Trans	form, Convolution Theorem, Laplace Transforms, Laplace Tra	ansfori	ns of	deriva	atives,
Substitution p	roperties of Laplace Transform, Properties of gamma and beta fund	ctions,	Error	functio	on and
Dirac Delta fu					
	OBABILITY AND GROUP THEORY		11 h		
	obability Theory, Random Variables, Binomial, Poisson and Norma				
	n, Central difference formula, Iterative process, Newton-Raphson fo	ormula	, Intro	ductor	у
Group Theory					
Module 4: TE			15 h		
	and Covariant Tensor, Jacobian, Relative Tensor, Pseudo Tensors (-		-	•
•	entum), Riemann space (Example: Euclidean space and 4D Minko		· /		
	sformation of Christoffel symbols, Covariant differentiation, Ricc		orem,	Diverg	gence,
A	acian tensor form, stress and strain tensor, Hooke's Law in tensor for	orm			
	ECIAL FUNCTONS			ours	<u> </u>
	of differential equations with variable coefficients, Legendre, Herm		-		
	nomials, Bessel functions and their generating functions, Recurrent	nce rel	ations,	, Ortho	ogonal
	Rodrigue's formula				
Textbook (s)	ical Mathada fan Dhuaicista, C. D. Anlifan, H. L. Wahan, E.E. Hamis,	2 012 /	74 aditi	on El	
	ical Methods for Physicists, G.B. Arkfen, H.J. Weber, F.E. Harris, Variable (Schaum's Outlines), Murray Spiegel, Seymour Lipschutz				
-	Revised 2 nd edition, McGraw Hill Education	, John	Schine	er, Der	mis
Reference Bo					
	Engineering Mathematics, E. Kreyszig (2 nd edition, Pearson, 2002)				
	ical Physics, B.D. Gupta, Vikas Publication House, 1986				
	ical Physics, A.K. Ghatak, I.C. Goyal, S.J.Chua, Laxmi Publication	s Priv	ate Lin	nited. 2	2016
	ical Methods, M.C. Potter and J. Goldberg, Prentice-Hall (2 nd edition			,	
		,	,		

Pre-requisite: Classical Mechanics of BSc Physics Course Objective (1) aims to understand the concepts of generalized coordinates and its subsequent applications to Lagrangian and Hamiltonian dynamics. (2) to be familitar with Hamiltonian dynamics and its applications to solve complex problems in a simplified manner. (3) enhance the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO 1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of generalized coordinates, Concept of virtual work, D'Alembert principle, Veloxity dependent potential. Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Return System in terms of radio systematic regardion, Stratesion of Hamilton's equation form variation principle, Derivation of Lagrange and mobile applace. Principle, Derivation of Hamilton's equation of mobia quartify for som sepecific potential, In	DSC	CLASSICAL MECHANICS	L T P C 3 1 0 4
Course Objective (1) aims to understand the concepts of generalized coordinates and its subsequent applications to Lagrangian and Hamiltonian dynamics. (2) to be familiar with Hamiltonian dynamics and its applications to solve complex problems in a simplified manner. (3) enhance the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics of systems. Langrangian Dynamics: 10 hours Langrangian Dynamics: 10 hours Langrange inding framitoris (aguiton, Buthian, Hamiltonian, Variation principle, Derivation of Hamilton's equation from Variation there energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonin Dynamics 12 hours <td>Pre-reg</td> <td>uisite: Classical Mechanics of BSc Physics</td> <td></td>	Pre-reg	uisite: Classical Mechanics of BSc Physics	
Lagrangian and Hamiltonian dynamics. (2) to be familiar with Hamiltonian dynamics and its applications to solve complex problems in a simplified manner. (3) enhance the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able (CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory, and its subsequent applications to Lagrangian and Hamiltonian dynamics. Colores problems, CO 3: to distinguish between different theories which explains the dynamics of soyte complex problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics more regimed in the conservation for kinetic energy of a system in terms of Generalized coordinates. Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates. Cyclic coordinates. Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Evanton principle, Derivation of Langrange equation, Evantison of Hamilton's sequation principle, Oraviations principle, Oraviations principle, Oraviations principle, Oraviation principle, Avariations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force Iter V Body Central Force Problem: Central force and motion in a plane, Reduct	-		
(2) to be familiar with Hamiltonian dynamics and its applications to solve complex problems in a simplified manner. (3) enhance the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics: CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics for systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation, Extrems of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Central force with and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extression of Hamilton's Yariation principle, Derivation of Hamilton's equation	(1) aims	to understand the concepts of generalized coordinates and its subsequent applica	tions to
(2) to be familiar with Hamiltonian dynamics and its applications to solve complex problems in a simplified manner. (3) enhance the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics: CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics for systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation, Extrems of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Central force with and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extression of Hamilton's Yariation principle, Derivation of Hamilton's equation			
(3) onbaace the knowledge regarding motion of the bodies under central force. (4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics: 10 hours Langrangian Dynamics: 11 hours Langrangian Dynamics: 12 hours Module 2: Hamiltonian Dynamics: 12 hours Hamiltonian dynamics: 12 hours Module 2: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation from brinciple, Derivation of Hamilton's quation principle, Derivation of Hamilton's quation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 2: Hamiltonian Quation principle, Derivation of Hamilton's equation form variation principle, A- variations, Principle of least actions in various forms ensectific potential equation form	(2) to be	familiar with Hamiltonian dynamics and its applications to solve complex probl	ems in a
(4) to have a broader perspective of rigid body kinematics in terms of mathematical analysis. (5) to enhance the knowledge of canonical transformation theory. (5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory, and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhina, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's variations principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 2: Modified Hamilton's Central force and motion in a plan	simplifi	ed manner.	
(5) to enhance the knowledge of canonical transformation theory. Course Outcome: After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 3: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 4: to evaluate various parameters involved in the classical dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics to represent theories which explains the dynamics of represent theories which explains the dynamics of represent theories and conservation provide theorems. Module 1: Lagrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics Hamiltonia dynamics: Hamiltonia Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's equation Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 1 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential. Integral power law potential, Virial theorem, Relation betwee kinetic and potential energy, Kepler's Problems: Equation of bit and the kin	(3) enha	nce the knowledge regarding motion of the bodies under central force.	
Course Outcome: After successful completion of the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. I0 hours Langrange quation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Concept of virtual work, D'Alembert principle, a gyatem in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. 14 hours Module 3: Motion under Central Force 14 hours 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and cla	(4) to ha	ve a broader perspective of rigid body kinematics in terms of mathematical analy	vsis.
After successful completion of the course, the students will be able CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics for systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation from variation principle, Derivation of Langrange equation from variation principle, Derivation to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force or equivalent one classification of orbit for some specific potential, Integral power law potential, Virial theorem, Relation between kinet	(5) to er	hance the knowledge of canonical transformation theory.	
CO1: to understand the concepts of generalized coordinates, Hamiltonian dynamics, central force, rigid body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Contain terms of Generalized coordinates, Cyclic coordinates, Concept of virtual work, D'Alembert principle, Langrangian Oynamics: Constraints, Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics II 21 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integra1 and its significance, Aumilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A-variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force I 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of robits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid bod	Course	Outcome:	
body dynamics and canonical transformation theory. and its subsequent applications to Lagrangian and Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours 1. Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's equation of more variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of morin first integral, Differential equation for on orbit, Equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, fequivalent one body problem, Equation of motion and first integral, Differential equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics The kinematics of rigid body motion: Independent co-ordinate of a rig	After su	ccessful completion of the course, the students will be able	
Hamiltonian dynamics. CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics: Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent nee body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one body problem, Equation of motion and first integral, Differential equation of robit and the kid of the orbit, Motion in time. Module 3: Motion ender Central Force 12 hours The Two Body			
CO 2: to apply the concepts of lagrangian and Hamiltonian dynamics to solve complex problems. CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics [10 hours] Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. [12 hours] Module 2: Hamiltonian Dynamics [12 hours] Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force [14 hours] The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one down problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics [12 hours] The kinematics of rigid body motion: Independent co-ordinate of a rigid body. Orthogonal transformation, Formal properties of transformation, Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment of finertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation and Hamilton Jacobi theory: Canonical transformation			agrangian and
CO 3: to distinguish between different theories which explains the dynamics of systems. CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law toptental, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 3: Motion under Central Force 12 hours The Two Body Central Force problem and classification of orbits for some specific potential, Integral	Hamilto	nian dynamics.	
CO 4: to evaluate various parameters involved in the classical dynamics theory in various problems. Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, V variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation, Magular momentum, Moment of inertia tensor, Principal obud a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation th			
Module 1: Lagrangian Dynamics 10 hours Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. 12 hours Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, Δ - variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation, Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy	CO 3: to	o distinguish between different theories which explains the dynamics of syste	ems.
Langrangian Dynamics: Constraints, Generalized coordinates, Concept of virtual work, D'Alembert principle, Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one dimensional problem, Equation of this for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (condit transformation, Angular momentum, Moment of inertia tensor, Product of inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion: of a rigid body about a point, Normal modes. Module 4: Rigid body about a point, Normal modes.	CO 4: 1	o evaluate various parameters involved in the classical dynamics theory in va	arious problems.
Langrange equation from D'Alembert principle, Velocity dependent potential, Expression for kinetic energy of a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, Derivation of Hamilton's variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation, Angular moment of inertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's bracket			
a system in terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. In terms of Generalized coordinates, Cyclic coordinates, Symmetry properties and conservation theorems. It amiltonian Dynamics I amiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Intervention of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem. Equation of motion and first integral, Differential equation of or an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation flores, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours			
Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. 12 hours Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Principal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical			
Module 2: Hamiltonian Dynamics 12 hours Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling without slipping on an inclined plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. 14 hours Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. 12 hours Module 4: Rigid body kinematics 12 hours 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Principal moment offinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. 12 hours Module 5: Canonical transformation theory 12 hours 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legen	•		onservation
Hamiltonian dynamics: Hamiltonian function H and conservation of energy: Jacobi's integral and its significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's Variation principle, Derivation of Hamilton's Variation principle, A- variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation, Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's characteristic function. Todue 5: Canonical tran			101
significance, Hamilton's equation, Routhian, Hamiltonian, Variation principle, Derivation of Langrange equation, Extension of Hamilton's Variation principle, Derivation of Hamilton's equation from variation principle, Δ - variations, Principle of least actions in various forms, Introduction to Nonlinear Dynamical Theory and Chaos. Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation, Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 Poisson bracket relation, Hamilton's characteristic function. Total Lecture hours 60 Poisson bracket relation, Hamilton's characteristic function.		-	
Module 3: Motion under Central Force 14 hours The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. 12 hours Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. The kinematics 60 hours	equation inclined principle	, Extension of Hamilton's Principle, to non-holonomic system, A hoop rolling witho plane, Modified Hamilton's Variation principle, Derivation of Hamilton's equation f Δ - variations, Principle of least actions in various forms, Introduction to Nonlinear	ut slipping on an from variation
The Two Body Central Force Problem: Central force and motion in a plane, Reduction of a two body central force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours			14 hours
force to equivalent one body problem, Equation of motion and first integral, Differential equation for an orbit, Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation),Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours Textbook(s)			
Equivalent one dimensional problem and classification of orbits for some specific potential, Integral power law potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment of of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours		•	-
potential, Virial theorem, Relation between kinetic and potential energy, Kepler's Problems: Equation of orbit and the kind of the orbit, Motion in time. 12 hours Module 4: Rigid body kinematics 12 hours The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. 60 hours Total Lecture hours 60 hours			
Module 4: Rigid body kinematics12 hoursThe kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation),Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes.12 hoursModule 5: Canonical transformation theory12 hoursCanonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function.60 hoursTotal Lecture hours60 hours	-		č
The kinematics of rigid body motion: Independent co-ordinate of a rigid body, Orthogonal transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation), Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory 12 hours Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours	and the l	kind of the orbit, Motion in time.	-
transformation, Formal properties of transformation matrix, Euler angles, Euler's theorem, Finite rotation, Infinitesimal rotations (contact transformation),Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours Textbook(s)	Module	4: Rigid body kinematics	12 hours
rotation, Infinitesimal rotations (contact transformation),Angular momentum, Moment of inertia tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours Textbook(s)	The kin	ematics of rigid body motion: Independent co-ordinate of a rigid body, Orthog	gonal
tensor, Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, Kinetic energy of motion of a rigid body about a point, Normal modes. Module 5: Canonical transformation theory Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours Textbook(s)	transfor	mation, Formal properties of transformation matrix, Euler angles, Euler's the	orem, Finite
motion of a rigid body about a point, Normal modes.Module 5: Canonical transformation theory12 hoursCanonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function.60 hoursTotal Lecture hours60 hours	rotation	, Infinitesimal rotations (contact transformation), Angular momentum, Momer	nt of inertia
Module 5: Canonical transformation theory12 hoursCanonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function.60 hoursTotal Lecture hours60 hours	tensor,	Product of inertia, Inertia tensor, Principal moment ofinertia: Principal axis, K	inetic energy of
Canonical transformation and Hamilton Jacobi theory: Canonical transformation, Legendre transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours Textbook(s)	motion	of a rigid body about a point, Normal modes.	
transformation, Generating functions, Conditions for canonical transformation, Bilinear invariant Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours	Module	5: Canonical transformation theory	12 hours
Condition, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket under canonical transformation, Angular momentum Poisson bracket relation, Hamilton Jacobi equation for Hamilton's principal function, Harmonic oscillator problem by Hamilton, Jacobi method, Hamilton's characteristic function. Total Lecture hours 60 hours Textbook(s) 60 hours	Canonio	eal transformation and Hamilton Jacobi theory: Canonical transformation, Leg	gendre
Total Lecture hours 60 hours Textbook(s) 60 hours	Condition transfor Hamilto	on, Poisson's brackets, Langrange brackets, Invariance of Poisson bracket unc mation, Angular momentum Poisson bracket relation, Hamilton Jacobi equati on's principal function, Harmonic oscillator problem by Hamilton, Jacobi met	ler canonical on for
Textbook(s)			60 hours
1. 11. Goldstein, Classical Witchanies, Marosa i uonsining House, 2001			
	1. 11.	Solusion. Subsidu Meenunes, Mulosu I uonisining 110050, 2001	

- 2. Jonh R Taylor, Classical Mechanics, University Science Books, U.S, 2004
- 3. David Morin, Introduction to Classical Mechanics, Cambridge University Press, 2009
- 4. Murray Spiegel: Theoretical Mechanics, McGraw Hill Education, 2017.
- 5. Frederick W. Byron and Robert W. Fuller: Mathematics of classical and Quantum Physics, Dover
- Publications; Revised ed. Edition,1992.
 Steven H. Strogatz: Nonlinear Dynamics and Chaos: With Applications in Physics, Biology, Chemistry, and Engineering, CRC Press, 2015.

Reference Books

- 1. N. C. Rana and P. S. Joag: *Classical Mechanics*, Tata Mc-Graw Hill, New Delhi, 1991.
- 2. S. L. Gupta, V. Kumar, H. V. Sharma: *Classical Mechanics*, Pragati Prakashan, Meerut, 2009.
- 3. P. V. Panat: *Classical Mechanics*, Narosa Publishing House, 2000.

		L	Т	Р
DSC	QUANTUM MECHANICS	3	1	0
Pre-req	uisite: Graduation Level Physics and Mathematics			
Course	Objectives:			
To prov	ide knowledge of the formalism of Quantum Mechanics			
	le students to learn different aspects of Quantum Dynamics.			
To make	e students familiar with angular momentum algebra			
To prov	ide knowledge about approximation methods in Quantum Mechanics.			
To prov	ide knowledge about Scattering and Relativistic Quantum Mechanics.			
Course	Outcome:			
After su	accessful completion of the course, the students will be able to			
	nderstand the basic formalism of Quantum Mechanics, Qusantum Dynamics, Angu	lar		
	tum, Angular Momentum, Approximation Methods, Scattering and Relativistic Qua		n	
Mechan				
CO 2: A	apply the knowledge of Quantum Mechanics to solve simple problems.			
CO 3: U	Inderstand different aspects of angular momentum algebra for applications.			
CO 4: E	Evaluate Quantum Mechanical problems using approximation methods.			
	1:GENERAL FORMALISM OF QUANTUM MECHANICS	15	hour	S
Mathem	natical properties of linear vector spaces, Dirac's Bra and Ket notation, Inner produc	ct, no	rm o	fa
vector, (orthonormality and linear independence, Basis and dimension, Outer product, proje	ction		
operator	r, completeness, closure property, Hermitian operators, eigenvalues and eigenvector			
- per utor	, completeness, closure property, rieminual operators, eigenvalues and eigenvector	rs, po	stula	ites
				ites
of Quan	tum Mechanics, wave function, probability density, orthogonality criterion, Repres	entat	ion	
of Quan Theory,		entat mom	ion	
of Quan Theory, represer	tum Mechanics, wave function, probability density, orthogonality criterion, Repres change of basis, Unitary operator, matrix representation of operators, position and	entat mom	ion	
of Quan Theory, represen	tum Mechanics, wave function, probability density, orthogonality criterion, Repres change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger	entat mom time	ion	m
of Quan Theory, represer indepen Module	tum Mechanics, wave function, probability density, orthogonality criterion, Repres change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 22: QUANTUM DYNAMICS	entat mom time 12	ion entu hou i	m rs
of Quan Theory, represen Indepen Module Gaussia	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmonic 	entat mom time 12 nic os	ion entu hou scilla	m rs tor
of Quan Theory, represen indepen Module Gaussia problem	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum 	entat mom time 12 nic os	ion entu hou scilla chani	m rs tor
of Quan Theory, represen indepen Module Gaussia problem – hydrog	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time 	entat mom time 12 nic os	ion entu hou scilla chani	m rs tor
of Quan Theory, represen Indepen Module Gaussia problem – hydrog Density	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum 	entat mom time 12 nic os n Meo rever	ion entu hou scilla chani	m rs tor ics
of Quan Theory, represen indepen Module Gaussia problem – hydrog Density Module	 tum Mechanics, wave function, probability density, orthogonality criterion, Repressentation of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 2: ANGULAR MOMENTUM 	entat mom time 12 nic os n Meo rever 10	ion entu houn scilla chani sal, hour	m rs tor ics
of Quan Theory, represen indepen Module Gaussia problem – hydrog Density Module Orbital	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 2: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their particular dense. 	entat mom time 12 nic os n Meo rever 10	ion entu houn scilla chani sal, hour	m rs tor ics
of Quan Theory, represen Indepen Module Gaussia problem – hydrog Density Module Orbital <i>L</i> represen	 tum Mechanics, wave function, probability density, orthogonality criterion, Repressentation of basis, Unitary operator, matrix representation of operators, position and thations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 2: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, symmetric and anti-symmetric 	entat mom time 12 nic os n Meo rever 10 matri	ion entu bentu scilla chani sal, hour x	m tor ics
of Quan Theory, represen Indepen Gaussia oroblem - hydrog Density Module Orbital represen wavefur	 tum Mechanics, wave function, probability density, orthogonality criterion, Repressentation of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 2: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, addition of angular momenta 	entat mom time 12 nic os n Meo rever 10 matri	ion entu bentu scilla chani sal, hour x	m tor ics
of Quan Theory, represen <u>ndepen</u> Module Gaussia problem - hydrog Density Module Orbital represen wavefur Gordan	 tum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, addition of angular momentic coefficients 	entat mom time 12 nic os n Meo rever 10 matri	ion eentu bentu scilla chani sal, hour x ebscl	m tor ics s
of Quan Theory, represen indepen Module Gaussia problem – hydrog Density Module Orbital A represen wavefur Gordan Module	 atum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and natations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS a Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, symmetric and anti-symmetric netions, Pauli's Exclusion Principle, spin and statistics, addition of angular moment coefficients 	entat mom time 12 nic os n Mec rever 10 matri ca, Clo 10	ion eentu bentu scilla chani sal, hour x ebscl	m tor ics s n- s
of Quan Theory, represent independ Module Gaussia problem – hydrog Density Module Orbital A represent wavefur Gordan Module Time In	 atum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS a Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their matrices, spin angular momenta and Pauli matrices, symmetric and anti-symmetric netions, Pauli's Exclusion Principle, spin and statistics, addition of angular momenta coefficients 4: APPROXIMATION METHODS 	entat mom time 12 nic os n Mec rever 10 matri a, Cl 10 ation	ion leentu houn scilla chani sal, hour x ebscl hour s, Ti	m tor ics s n- s
of Quan Theory, represen Indepen Gaussia problem - hydrog Density Module Orbital Crbital cepresen wavefur Gordan Module Time In depende	 atum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS a Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, addition of angular momenta coefficients 4: APPROXIMATION METHODS dependent Perturbation Theory, Variational Theory, WKB Method and their applicent Perturbation Theory, transition to a continuum of final states – Fermi's Golden 1 	entat mom time 12 nic os n Mec rever 10 matri ca, Cle tation Rule,	ion leentu houn scilla chani sal, hour x ebscl hour s, Ti	m tor ics s n- s
of Quan Theory, represen indepen Module Gaussia problem – hydrog Density Module Orbital A represen wavefur Gordan Module Time In depende applicat	 atum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and thations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS n Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their matrices, spin angular momenta and Pauli matrices, addition of angular momenta coefficients 4: APPROXIMATION METHODS dependent Perturbation Theory, Variational Theory, WKB Method and their applic tent Perturbation Theory, transition to a continuum of final states – Fermi's Golden I ions to constant and harmonic perturbations, sudden and adiabatic approximations.	entat mom time 12 nic os n Meo rever 10 matri ca, Clo tation Rule,	ion eentu houn scilla chani sal, hour x ebscl hour s, Ti	m rs tor ics s n- s me
of Quan Theory, represen indepen Module Gaussia problem – hydrog Density Module Orbital A represen wavefur Gordan Module Time In depende applicat	 atum Mechanics, wave function, probability density, orthogonality criterion, Repress change of basis, Unitary operator, matrix representation of operators, position and nations, Expectation values, uncertainty relation, Ehrenfest Theorem, Schrodinger dent and time dependent formulation. 2: QUANTUM DYNAMICS a Wave Packet, Schrodinger picture, Heisenberg picture, solution of simple harmon by the operator method, symmetry and conservation laws, symmetries in Quantum gen atom and spherical harmonics, spatial translation, time translation, parity, time matrices 3: ANGULAR MOMENTUM Angular Momentum, angular momentum algebra, spin, Ladder operators and their intations, spin angular momenta and Pauli matrices, addition of angular momenta coefficients 4: APPROXIMATION METHODS dependent Perturbation Theory, Variational Theory, WKB Method and their applicent Perturbation Theory, transition to a continuum of final states – Fermi's Golden 1 	entat mom time 12 nic os n Meo rever 10 matri ca, Clo tation Rule,	ion leentu houn scilla chani sal, hour x ebscl hour s, Ti	m rs tor ics s n- s me

amplitude, phase shifts, partial wave analysis, Born Approximation and applications. Relativistic Quantum Mechanics: Klien-Gordon and Dirac equations, Semi-classical theory of radiation - Einstein coefficients, atom field interaction, dipole matrix elements, spontaneous and stimulated emission rates, Selection Rules.

Total Lecture hours

60 hours

Text Book(s)

- Quantum Mechanics : Theory and Application, A. Ghatak and S. Loknathan, 4th edition, 1. 2. Macmillan, 1999
- Modern Quantum Mechanics, J.J. Sakurai (Addison-Wesley, 1993)

Reference Books

- Ouantum Mechanics, L. I. Schift, 3rd edition, Mc-Graw Hill, 1968 1.
- Introduction to Quantum Mechanics, D. J. Griffith, 2nd Edition, Pearson Education, 2005 2.
- 3. Quantum Physics, S. Gasiorowicz, Wiley (3rd edition, 2003)

С L Т Р OEC DATA SCIENCE AND MACHINE LEARNING 3 0 0 3

Pre-requisite: Calculus, Statistics and Linear Algebra

Course Objectives:

1. To impart to the students a comprehensive course on the basics and applications of Data Science and Machine Learning.

2. To disseminate lectures on classification and regression models and also to teach the challenges of deploying these models in real-world datasets.

3. To evaluate the working principles between Neural Networks and its implication in both classification and regression models.

Course Outcome:

At the end of a course, a student is able to:

CO 1: to understand the basics of statistics and apply the tools in data science.

CO 2: to apply machine learning models appropriately in any dataset, with the additional knowledge and skill of handling missing data, dimensionality reduction and undersampling/oversampling.

CO 3: to analyze the appropriate Neural Networks in diverse areas such as Image Recognition, Pattern Recognition, Classification, Trend Analysis, Time-Series anomaly detection and Prediction and so on. CO 4: to evaluate the suitable machine learning algorithm taking into consideration the features of the given dataset.

Module 1: Basics of Statistics and Machine Learning	5 Hours
Statistical Distributions - Binomial, Poisson and Gaussian Distribution, Moments - Mean, Vari	ance, Skew
and Kurtosis, Central Limit Theorem, Covariance and Correlation, Bayes' Theorem.	
Module 2: Regression and Classification Models	25 hours
Linear and Polynomial Regression, Logistic Regression, Support Vector Machine, K-Nearest N	eighbors,
Decision Tree and Naïve Bayes, K-Means Clustering, Recommendation Systems - Cosine Simi	larity,
Reinforcement Learning.	
Entropy, Overfitting and Underfitting, Confusion Matrix in Classification Models - Accuracy, I	Precision,
Sensitivity, Recall and F1 Score.	
Challenges of Real-World Datasets - Bias-Variance Trade-Off, Detection of Outliers, Feature E	ngineering
and the Curse of Dimensionality, Dimensionality Reduction - Principal Component Analysis (F	'CA),
Imputation Techniques for Missing Data, Undersampling and Oversampling in Unbalanced Dat	asets.
Activity-Mammogram, PIMA (Indian Diabetes) and Spam/Ham Detection.	
Module 3: Deep Learning and Neural Networks	15 hours
Prerequisites of Deep Learning, Basics of TensorFlow and Keras, Recurrent Neural Network (R	.NN),
Convolutional Neural Network (CNN), LSTM (Long Short-Term Memory), Time Series Predic	tion and
Image Classification, Tuning Neural Networks: Training Rate and Batch Size Hyperparameters,	,
Regularization with Dropout and Early Stopping.	
Activity-Prediction of Political Affiliation, Image Recognition and Chaotic Time-Series Predict	ion.

Textbook (s)

1. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd Edition, P. Bruce, A. Bruce and P. Gedeck (2020).

2.	Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow, 2 nd Edition, A. Green
3.	(2019).
	Data Science From Scratch: First Principles with Python (O'Reilly), 2 nd Edition, J. Grus (2019).
Refere	ence Books
1.	The Art of Statistics: Learning from Data (Pelican Books), David Spiegelhalter (2020).
2.	Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools (Dreamtech
	Press), D. Cielen, A.D.B. Meysman and M. Ali (2016)

DSC	PHYSICS LABORATORY - I	L T P C 0 0 12 6
Pre-requisite	Basic Computer Skills.	0 0 12 0
Course Object	tives:	
Course Obje	ective :	
 2) To develop thinking. 3) To improve 	broad perspective about the uses of computers in engineering in p basic understanding of computers, the concept of algorithm a we the ability to incorporate exception handling in object-oriente	nd algorithmic ed programs.
,	p the use of the C programming language to implement various	s argorithms and
Course Outco	basic concepts and terminology of programming in general.	
	ul completion of the course, the students will be able	
	n the basic knowledge in fundamentals of programming, algorit	thme and
	technologies and fundamentals of Computer Science.	unins and
	erstand the basic idea of how to control the sequence of a progr	am and give
logical outpu		
	velop C programs to solve simple engineering problems using looping	a constructs
	bly the concept of Strings for writing programs related to charac	-
List of Exper		ter unuy.
statements, sc	n to Programming, constants, variables and data types, operators and anf and printf, c input and c output	Expressions, I/O
	a program to display a string of alphabets ex: Hello World.a program to take two values using standard input function and findi) Addition of two values.	:
	i) Subtraction of a value from another value.	
	iii) Multiplication of two values.	
	iv) Division between two values.	
	v) Modulo division between two values.	
c) Wi	ite a program to read a character in upper case and then print in	lower case
d) Wr	te a program to convert degrees Fahrenheit into degrees Celsius	S.
		5.
	te a program to calculate the bill amount for an item given its q	
e) Wri	te a program to calculate the bill amount for an item given its q nt and tax display the result using standard output function.	
e) Writvalue, discout2) Programs a) Write	nt and tax display the result using standard output function. using simple control statements such as if-else, while, do-while, a program to find whether the given number is even or odd.	uantity sold,
 e) Write value, discours 2) Programs a) Write b) Write 	nt and tax display the result using standard output function. using simple control statements such as if-else, while, do-while, a program to find whether the given number is even or odd. a program to find whether a given year is a leap year or not.	uantity sold,
 e) Writevalue, discours 2) Programs a) Write b) Write c) Write 	nt and tax display the result using standard output function. using simple control statements such as if-else, while, do-while, a program to find whether the given number is even or odd. a program to find whether a given year is a leap year or not. a program to calculate the root of a quadratic equation.	uantity sold, , for loop etc.
 e) Writevalue, discours 2) Programs a) Write b) Write c) Write d) Write e) Write 	nt and tax display the result using standard output function. using simple control statements such as if-else, while, do-while, a program to find whether the given number is even or odd. a program to find whether a given year is a leap year or not.	uantity sold, , for loop etc. n steps of 15.

- g) Write a program using do-while loop to display the square and cube of first n natural numbers.
- h) Write a program to calculate Xⁿ by using for loop.
- i) Write a program to calculate sum of squares of first *n* even numbers.
- j) Write a program that accepts any number and prints the number of digits in that number.

k) Write a program to enter hexadecimal number and display the decimal equivalent of this number.

1) Write a program to calculate square root of a number by using break and continue statement.

3) Programs using Arrays: declaring and initializing arrays. Program to do simple operations with arrays Strings – inputting and outputting strings. Using string functions such as streat, strlen etc.

- a) Write a program to read and display *n* numbers using an array.
- b) Write a program to arrange the elements of an array in ascending order.
- c) Write a program to interchange the largest and the smallest number in the array.
- d) Write a program to program to delete number from an array that is already sorted in ascending order.
- e) Write a program to merge two unsorted arrays Write a program to implement linear search.
- f) Write a program to print the elements of a 2D array.
- g) Write a program to read and print the elements of a matrix.
- h) Write a program to find the sum of two same order matrices and print the sum matrix.
- i) To find the product of two matrices and print the product matrix.

4) Use of strings :

a) Write a program to input and display a string.

b) Write a program to concatenate two strings taken as input using standard input functionand display.

c) Write a program to find if a string is palindrome or not.

d) Write a program to reverse a string.

5) Write a program (by using function) :

- a) Sum of two numbers.
- b) Subtraction of a value from another value.
- c) Multiplication of two values.
- d) Division between two values.

6) Solve the s-wave Schrodinger equation for the ground state and the first excited state of the Hydrogen atom:

$$\frac{d^{2}Z}{dr^{2}} = A(r)u(r), A(r) = \frac{2m}{h^{2}}[V(r) - E], \text{ where } V(r) = -\frac{e^{2}}{r}$$

Here, m is the reduced mass of the electron. Obtain the energy Eigenvalues and plot the corresponding wave functions. Remember that the ground state energy of the hydrogen atom is -13.6 eV Take $e = 3.795 (eVÅ)^{1/2}$, hc = 1973 (eVÅ) and $m = 0.511 \times 10 eV$

Textbook (s)

- 1. PROGRAMMING IN ANSI C BY E. BALGURUSWAMY, TATA MC-GRAW HILL.
- 2. PROGRAMMING WITH C, SCHAUM SERIES.
- 3. A FIRST COURSE IN PROGRAMMING WITH C, T. JEYAPOOVAN, VIKASH
- 4. PUBLISHING HOUSE PVT. LTD. COMPUTER FUNDAMENTALS AND PROGRAMMING IN C, REEMA TAHREJA, OXFORD HIGHER EDUCATION

<mark>SEMESTER - II</mark>

DSC	A TOMIC AND MOLECUL AD DUVSICS	L	Т	P	С
DSC	ATOMIC AND MOLECULAR PHYSICS	3	1	0	4
	Quantum Mechanics.				
Course Objec					
	comprehensive course on the applications of Quantum Mechanics in	the Pl	nysics	s of	
Atoms and Mo					
	ate lectures on the Molecular Physics of Diatomic Molecules.		а ·		
	the connection behind spectroscopic methods such Raman Effect, Ele		Spin	l	
	SR) and Nuclear Magnetic Resonance (NMR) and Molecular Physics.		4 a d	:41. :4	
4. 10 teach stu Course Outco	dents the physics behind the operation of Lasers and the properties as	socia	ted w	<u>1111 11.</u>	
	al completion of the course, the students will be able				
	stand the application of Perturbation Theory in the Fine Structure of I	Hudro	an an	and	
	nethods such as Zeeman and Stark Effect.	ilyun	igen a	anu	
	bret the physics behind the Rotational, Vibrational and Electronic stru-	cture	of Di	atomi	ic.
Molecules.	net the physics bennie the Rotational, violational and Dieetome stra	eture		atom	U
	ze the physics of various spectroscopic methods such as Raman Effect	t. ES	R and	1 NM	R
	ectures of Molecular Physics.	.,			
	rehend the operating principles of Laser, the properties and the nume	rous t	ypes	of	
Lasers.					
Module 1: At	omic Physics			20 Ho	ours
Fine Structure	of One-Electron Atoms - Mass Correction, Spin-Orbit and Darwin T	erms,	Effe	ct of	
	agnetic Fields: Zeeman, Paschen-Bach and Stark Effects, Ground Sta				ron
Atoms – Pertu	rbation Theory and Variational Methods, LS and JJ Coupling, Lande	Interv	val an	d	
	s, Collision and Doppler Broadening.				
	olecular Physics - I			10 ho	urs
	imer approximation for diatomic molecules, Rotational, Vibration and				
	atomic Molecules, Spectroscopic terms, Electronic Structure - Molec			netry a	and
	lecular Orbital and Valence Bond Methods for Hydrogen molecule as	nd 101			
	olecular Physics - II			<u>15 ho</u>	
	ctra of Diatomic Molecules, Isotope Effect, Vibrational Spectra of Di				es -
	Anharmonic Vibrators, Vibration-Rotation Spectra, Electronic Spectra				~
	brational Structure of Electronic Transitions, Rotational Structure of				
Effect, ESR ar	es, Fortrat diagram, Franck-Condon principle, Electron Spin and Hund NMP		ases,	Nama	111
Module 4: La			-	15 ho	ure
	ciple of Laser – Threshold Condition for Laser Oscillation, Rabi freq	1000			uis
1 0	alation Inversion and Resonator Modes, Multilevel rate equations and	•	-		
	Profile of Spectral Lines, Types of Lasers - He-Ne, CO2 and Semico			, Last	71
Textbook (s)	Trome of Spectral Lines, Types of Lasers - He-ive, CO2 and Semico	nuuci	01.		
	f Atoms and Molecules (2 nd edition Pearson, January 2003), B. H.	Bran	sden	and	C
J. Joacha		Dian	isuen	anu	с.
	r Structure and Spectroscopy (Prentice Hall India, January 2007)	. G. /	Aruld	lhas.	
	lectronics (Cambridge India, January 2017), Ajoy Ghatak and K				
Reference Bo		_ J	8	J	
	s of Quantum Mechanics (Cambridge University Press, August 20	16).]	Davio	ł J.	
-		-/7			
Griffiths.					
	Physics of Atoms, Molecules, Solids, Nuclei and Particles (2 nd Pa	perba	nck V	Viley.	
2. Quantum	Physics of Atoms, Molecules, Solids, Nuclei and Particles (2 nd Pa 2006), R. Resnick and R. Eisberg.	perba	nck V	Viley,	
2. Quantum January 2	•	-		•	

DSC	CONDENSED MATTER PHYSICS	L T P C 3 1 0 4	
Pre-requisite:	BSc course on Condensed Matter Physics		
Course Object	ve		
(1) aims to enh	ance the concepts of crystalline nature of solids with a complete know	ledge of	
vibrations in th	e crystal through proper mathematical analysis.	-	
(2) to be famili	ar with different types of crystals in detailed manner understanding th	eir electric nature.	
	e knowledge regarding ferromagnetic with the help of different theorie		
· /	oader perspective of superconductors and their properties via varied e		
	the knowledge of band theory of solids.	1	
Course Outcor	š ,		
	completion of the course, the students will be able		
	the nature of crystalline solids by learning experiments with their result	analysis and from	
concept of elast		5	
•	the theory of ferroelectric transitions to understand the dynamics,	thermodynamics	
and phase tran		inclineagnaines	
1	various theories to have a broader knowledge of ferromagnetic.		
	ze the properties of superconductors with the results provided by v	arious	
•		anous	
mathematical theories.			
	quantum mechanics to understand the band theory of solids in det	15 hours	
Module 1: Cry			
	of crystal structure, Diffraction of waves by crystals, Reciprocal lattice		
	echnique, Laue, Powder and rotating crystal method, Crystal structure fac		
	tice Vibrations: Quantization of elastic waves, Phonon momentum and in	nelastic scattering	
by phonons.			
•	tal: Point defects, Colour centres, F-centres, Line defects and planer defe	cts, Role of	
dislocations in o			
Module 2: Fer		10 hours	
	Classification of ferroelectric crystals, Theory of the ferroelectric displaci		
Polarization catastrophe, Soft optical phonon, Thermodynamics of ferroelectric transition, Ferroelectric			
	rroelectric, Piezoelectric and pyroelectric material. Phase Transition: Fir	st and second order	
-	range order, Short range order and Bragg William model.		
Module 3: Fer		10 hours	
•	ferromagnetism, Exchange interaction: Heisenberg model, Ferromagnet	e e	
	sotropy energy, Bloch wall, Curie-Weiss law for susceptibility, Antiferro	omagnetic,	
	rder, Spin wave and magnons.		
	perconductivity	10 hours	
	na, Meissner effect, Critical field, Type- I and Type- II superconductors,		
· ·	ondon equations, Coherence length, BCS theory of superconductivity, F	· ·	
	ng, dc and ac Josephson Effect, SQUID, High temperature superconducto		
	nd Theory of Solids	15 hours	
Band Theory of Solids: Electrons in periodic lattice, Bloch theorem, Nearly free electron model, Tight			
binding approximation, Fermi surface, de Hass-Van Alphen effect, Cyclotron resonance,			
Magnetoresistance, Quantum Hall effect.			
Optical Properties: Refractive index, Electronic polarization, Optical absorption, Photoconductivity,			
	tween absorption coefficient and band gap recombination.		
Total Lecture	lours	60 hours	
Text Book(s)			
	: Introduction of Solid State Physics, 7th edition, John Wiley & Sons, 200	4.	
	ker: Solid State Physics, Prentice Hall, 1957.		
	•		
3 N.W. As	hcroff N.D. Mermin: Solid State Physics, Holt, Rinehart and Winston, 19		
3 N.W. As 4 J.M Zim	•		

Reference Books						
1. J.P. Shrivastava: Elements of Solid State Physics, 2nd edition, PHI, New Delhi, 2006.						
2. L.V. Azaroff: <i>Introduction to Solids</i> , TMH edition, 1996.						
3. M. Tinkham: <i>Introduction to superconductivity</i> , Dover Publications, 2004.	<u> </u>	<u> </u>	_	~		
DSC STATISTICAL MECHANICS	L	Τ	P	С		
	3	1	0	4		
Pre-requisite: Graduation Level Physics						
Course Objectives:						
To provide fundamental knowledge about Statistical Mechanics for describing system	stems c	ontain	ing la	rge		
number of particles.			U	U		
To introduce the advance concepts of Classical Statistical Mechanics so that stude	nts wil	l be ec	quippe	ed		
with sufficient knowledge of the subject.						
To impart fundamental knowledge of Quantum Statistical Mechanics and its appl	cations	5.				
To develop the interest and ability among students to solve challenging physical p	roblem	is by tl	ne			
application of techniques of Statistical Mechanics in future.						
Course Outcome:						
After successful completion of the course, it is expected that the students will						
CO1: be equipped with sufficient knowledge of the Statistical Mechanics and hence v	vill be a	able to	look			
critically for analyzing any physical phenomena.						
CO 2: Apply different aspects of Classical Statistical Mechanics.						
CO 3: Understand and appreciate different features of Quantum Statistical Mechanics into diverse physical phenomena.	so as t	o gam	msign	ι		
CO 4: Appreciate the universality of critical exponents characterizing phase transi	tions					
PROBABILITY THEORY	ours					
Statistical basis of thermodynamics, probability concepts, entropy of a probability dis	tributio	on, rand	lom w	alk,		
microstate and macrostate, phase space, Liouville theorem						
Module 2: CLASSICAL STATISTICAL MECHANICS 191	ours					
Concept of ensembles, microcanonical, canonical and grand canonical ensembles, sys	tem in	grand	canon	ical		
ensembles, Partition functions, principle of equipartition of energy.						
Energy of Harmonic oscillator, partition function for canonical ensemble, energy						
canonical ensemble, partition function and Thermodynamic function for grand canonical ensemble,						
density fluctuations in the grand canonical ensemble, theory of paramagnetism, negative temperature.						
	ours					
Indistinguishable particles in quantum mechanics, Bosons and Fermions, Bose-Ei			,			
Bose gas, photons, Bose-Einstein condensation. Fermi-Dirac statistics, Fermi energy, ideal Fermi gas,						
Density operator, Quantum Liouville equation, pure and mixed states.						
	ours					
Brownian motion; diffusion equation, approach to equilibrium: the Fokker –Planck equation,						
introduction to non-equilibrium processes						
First and second order phase transition, phase diagram, Interacting spin systems, the Ising model (one dimension), paramagnetic and forcemagnetic phases, liquid balium						
dimension), paramagnetic and ferromagnetic phases, liquid helium 60 hours						
	00 II	ours				
Text Book(s)	\sim					
1. Statistical Mechanics, R.K. Pathria (Butterworth-Heinemann, Second Edn, 1996).						
 Statistical Mechanics, K. Huang (2ndEdition, Wiley-India, 2008). Statistical Physics : L. Landau and E.M. LifShitz 						
Reference Books						
Reference D00ks						

1Statistical Mechanics: An Advanced course with problems and solutions, Ryogo Kubo (North-
Holland, 1965)

-		Statistical Physics : F. Reif				
DS	C	NANOMATERIALS	L	Т	P	С
20	Č	INARONA I ENIALS				C
			3	1	0	4
Pre-	ree	quisite: Graduation Level Physics				
		e Objectives:				
		vide fundamental knowledge about nanomaterials				
		ble students to learn different methods of fabrication and characterization of nano	struc	tured	mate	rials.
To n	nak	e students familiar with specific features of nanoscale growth and thermodynami	cs.			
To le	ear	n about the remarkable properties of nanomaterials.				
-		vide knowledge about application of nanomaterials.				
		e Outcome:				
		uccessful completion of the course, the students will be able to				
		Understand physics at the nanoscale.				
		Understand different methods of synthesis and characterization of nanomaterials.				
		Analyse the properties specific to nanomaterials.				
		Apply properties of materials at the nanoscale in emerging areas.e 1: INTRODUCTION10 hours				
			oster		arrate	
		ize scale, History of Nanotechnology, Quantum Mechanics and Fluctuation in nar area to volume ratio, surface energy, chemical potential as a function of surface of			•	
		ation and steric stabilization, Idea of zero, one and two dimension structures, vaca				
		crystals, Effect of nanoscale dimensions on various properties.	incic	s and	uisio	cations
		e 2: SYNTHESIS AND CHARACTERIZATION 19 hours				
Synt						
2		wn and bottom-up approaches, synthesis of metal, semiconductor, carbon and bio	nano	omate	rials.	Grains
		in boundaries, distribution of grain sizes, pores, strains. Thin film preparation me				
		ation, sputtering and pulsed laser deposition methods. Gas phase synthesis of nan				
collc	oida	al methods, mechanical milling, dispersion in solid-doped glasses and sol gel met	hod,	functi	onali	zation
		oparticles.				
		terization:	_			
		terization by diffraction method and optical methods. Chemical characterizations	Ram	an spe	ectros	scopy,
		AS and EXAFS.				
		e 3: STRUCTURE AND THERMODYNAMICS AT NANOSCALE			9 h	
-		c features of the nanoscale growth, control of size, nucleation, growth and aggreg		-		-
		ons and geometric evolution of the lattice in nano crystals, thermodynamics of ve	ry sn	an sy	stems	s. Sell-
		ling nanostructured molecular materials and devices. e 4: PROPERTIES			111	hours
			0.000	n off		
Melting point and lattice constants, Mechanical properties, Optical properties; Surface Plasmon effect, Quantum size effect, Electrical conductivity; Surface Scattering, Change of Electronic structure, Quantum Transport,						
Effect of microstructure, Ferroelectric and dielectrics, Superparamagnetism.						
		e 5: APPLICATIONS			11	hours
		ation in molecular and nano-electronics, Biological applications (imaging, drug de	eliver	v). O		
and quantum dot devices, Energy application of nanomaterials; Photochemical cell, Lithium –ion battery,						
Hydrogen storage and thermo-electrics, Environmental application, Photonic crystals.						
Total Lecture hours 60 hours						
Text	B	ook(s)				
		anostructures and Nanomaterials: Synthesis, Properties and Applications - Gu	ozho	ong C	ao an	d Ying
		ang, 2nd Ed., World Scientific, Singapore, 2011.		0		C
2.		troduction to Nanoscience - S.M. Lindsay, Oxford University Press, New York, 2010				
		troduction to Nanotechnology, C. P. Poole Jr. & F. J. Owens (Wiley-Interscien	nce,			
	20	03)				

nc	0
DD	L

Prerequisite : Graduate level Laboratory knowledge

Course Objective :

This course aims at performing basic physics experiments by the students. The students will be able to determine 1. some physical parameters and design circuits to understand important principles of Physics. 2. Enable the students to analyze problems starting from first principles, evaluate and validate experimental results, and draw logical conclusions thereof. 3. Make the students to understand that acquiring knowledge and skills appropriate to their professional activities is a never-ending process. 4. This lab will help the students to understand and Introducing basic concepts via diffraction methods, lattice vibrations and free electrons, Hall Effect. 5. Enhance the knowledge of students to the band structures for studying different materials. **Course Outcome:** CO1: Students will gain in-depth knowledge about the molecular structure using various concepts. **CO2**: To understand the basic idea of different types of preparation methods of nanomaterial's and their characterization techniques and interpretations. **CO3**: Students will be able to answer about various spectroscopic techniques and their modern developments. CO4: To increase the level of understanding of students about the various spectra of atoms, molecules and the use of electromagnetic radiation in understanding the tiny particles and the whole universe. **List of Experiments :** To determine the first excitation potential of a Gas by Frank-Hertz experiment. 1. 2. To find the wavelengths of the spectral lines of Hydrogen and hence determine the value of Rydberg constant. 3. Determination of e/m of an electron.(Zeeman effect). 4. Measurement of Magneto resistance of the supplied material. 5. Observe diffraction of the beam of electrons on a graphitized carbon target and calculate the intra-atomic spacing's in the graphite. 6. Determination of solar cell characteristics. 7. Study of Dielectric constant and Curie temperature of a ferromagnetic sample. 8. Determination of planks constant by planks blackbody radiation experiment. 9. Determine the Band gap of a semiconductor by using four probe methods. 10. Perform the Hall Effect experiment by recording the Hall voltage at different sample currents under different magnetic field strengths. Plot suitable graph and hence determine Hall coefficients. Identify conductivity type of the semiconductor. 11. To study the dispersion relation for the monatomic and diatomic lattice. 12. Familiarization with ORIGIN Graphing and Analysis Software for analysis of absorption & photoluminescence spectra and X-ray diffraction patterns (Demo). 13. Preparation of e CdS nanostructures and record UV-Vis absorption spectra. Examine possible quantum confinement effect. **Text Books :** 1) Advanced Practical Physics for students, B.L. Flint and H.T. Workshop, 1971, Asia Publishing House 2) Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4thEdition, reprinted 1985,

Reference Books

Heinemann Educational Publishers.

1. Nanoscience and Nanotechnology - B.K. Parthasarthy (Edited), Isha Books, Delhi, 2007.

3) A Textbook of Practical Physics, I. Prakash & Ramakrishna, 11thEd., 2011, Kitab Mahal.

2. Nanostructured Materials and Nano Technology, H. S. Nalwa (Ed.) (Academic Press, 2002)