

Department of Mathematics

• Proposed list of courses to be offered for first three semesters

Semester	Core Courses	Mathematics as single Minor	Credit
Ι	Algebra and Calculus I	Numerical Analysis	4
II	Algebra and Calculus II	Complex Analysis	4
III	Differential Equations	Basic Statistics	4

• <u>Multidisciplinary Courses to be offered from Dept. of Mathematics</u>

Semester	Courses	Credit
Ι	Foundation of Mathematics	3
II	Combinatorics, Partial Fractions and	3
	Measures of Central Tendency	
III	Introduction to programming with MATLAB	3

Hathkhowapara, Azara, Guwahati-781017, Assam

DETAILED SYLLABUS

SEMESTER I	ALGEBRA AND CALCULUS-I	L	T 1	P 0	C A
Pre-requisite:	Knowledge of Mathematics at Class XI & XII	5	I	U	
Course Object	ives:				
Course Object 1. To achin number 2. To have 3. To use 1 4. To gain and app Course Outcom After successfu CO 1: apply D CO 2: recogniz CO 3: evaluate CO 4: compute	ives: eve conceptual understanding of basic number theory, connections and trigonometry, matrices. e a deeper insight of the developments of the generalized notion natrix methods for solving linear equations. proficiency in calculus computations and to calculate the higher ly them in proper situations. ne: completion of the course, the students will be able to e Moivre's theorem in a number of applications to solve numerica e the essential tool of matrices and linear algebra in a comprehense the roots of complex numbers	on of ons er orc l pro ive r	com of trig ler de blems nanne	plex gonor erivat	netry. ives
CO 4: compute	and analyze functions using limits, derivatives and apply the tech	imqu	les of		
Modulo 1: Bos	ia Number Theory			12 H	nire
Cardinality of a Euclidean algor	a set, Well-ordering property of positive integers, Division algorithm, Fundamental Theorem of Arithmetic, Congruence relation	ithm, betw	Divi een in	isibili nteger	ty and ts.
Module 2: Ma	rices			14 Ho	ours
Symmetric, SI Echelon form,	ew-symmetric and Orthogonal matrices, Rank of a Matrix, nverse of a matrix, System of linear equations.	Ro	w re	ducti	on and
Module 3: Cor	nplex Numbers			12 Ho	ours
Polar represent complex numb Functions.	ation of complex numbers, De Moivre's theorem and its apper, Trigonometrical and exponential functions of complex a	plica rgun	tions. ients.	Roc Hyp	ots of a erbolic
Module 4: Diff	erential Calculus			<u>22 Ho</u>	ours
Limit, Continu Curvature, Suc Taylor's and I multiple varia derivatives.	ty and Differentiation, Indeterminate forms and L'Hospital cessive differentiation, Leibnitz' theorem, Rolle's Theorem, I Maclaurin's series, Partial derivatives, Extreme values of functions, Euler's theorem on Homogeneous construction, Euler's theorem on Homogeneous constructions and the provide the series and the provide the provide the series and the series and the provide the series and	agra Lagra tions	ile, A inge' s (of funct	Asym s The sing ions,	ptotes, eorem. le and Total
Total Lecture	nours		(50 ho	urs
Text Rook(s)					
1. Dicks	on L. E. First Course in The Theory of Equations John Wiley	& S	ons I	nc N	Jew
2. Hoffm NewJe	The Project Gutenberg EBook (1922) an K., Kunze R. A., Linear Algebra, 2 nd Ed, Prentice-Hall, Inc. prsey (1971)	., En	glew	bod C	Cliffs,
3. Anton Ltd.,S 4. Bartle Inc. N	H., Bivens I. and Davis S., Calculus (10th Edition), John Wiley ingapore (2012) Robert G., Sherbert Donald R., Introduction to Real Analysis, Joh ewYork (2000)	' and nn W	sons 'iley	(Asi & So	a), Pt ns,
Reference Boo	ks				

1.	Mapa S.K., Higher Algebra (Classical), Asoke Prakashan, Calcutta (2000)
2.	Andreescu T, and Andrica D., Complex Numbers from A to Z, Birkhauser, Boston,
	USA (2000)
3.	Das B. C.& Mukherjee B. N., Differential Calculus, U. N. Dhur and Sons Pvt. Ltd,
	Kolkata (2014)

		T.	Т	Р	С
SEMESTER II	ALGEBRA AND CALCULUS-II	3	1	0	4
Pre-requisite: K	nowledge of Mathematics at Class XI & XII				
Course Objectiv	es:				
1. To demor	istrate the techniques to solve polynomial equations of higher de	gree			
2. To calcula	ate and interpret geometrically triple product of vectors and to fo	rm eq	luati	ons	
ofstraight	line, plane, sphere in vector form				
3. To learn t	echniques for. producing a rough idea of overall shape of differe	ent cu	rves		
4. To apply	integrals in physical problems				
Course Outcom					
After successful of CO 1: describe	completion of the course, the students will be able to the graphical representation of a polynomial maximum and min	imun	n val	uesof	- a
polynomial acquire the concept of symmetric functions					
CO 2: evaluate	the vector triple product and product of four vectors and find the	eaua	ntion	of	
straight l	ines, planes in vector form	- 1			
CO 3: trace the	curves of various functions in different forms like Cartesian, parametri	ic and	pola	r	
CO 4: attain a b	basic understanding of Beta and Gamma functions and apply the	know	ledg	e of	
integratio	on in finding areas and volumes of surfaces of revolution.				
Module 1: Theo	ry of Equations		2	20 Ho	ours
General properti	es of polynomials, Graphical representation of a polynomi	als, 1	max	imun	1 and
minimum values	of a polynomials, General properties of equations, Descartes' r	ule of	t sigi	ns po	sitive
Applications syn	metric function of the roots. Transformation of equations. So	Jution	s of	reci	rocal
and binomial equ	ations. Algebraic solutions of the cubic and biquadratic. Prop	erties	s of t	he de	erived
functions.		•••••			
Module 2: Vecto	or Algebra		1	0 He	ours
Triple product o	f vectors, Vector four product and their properties, Reciproc	al sy	stem	of v	rectors
Vector equation of	of straight line, plane and sphere.	5			
Module 3: Traci	ng of Curves		1	0 Ho	ours
Concavity and in	flection points, curve tracing in Cartesian coordinates, tracing	in p	olar	coor	dinates
of standard curve	s.				
Module 4: Integ	ral Calculus		2	20 Ho	ours
Reduction formu	lae, Evaluation of definite and improper integrals, Beta and Ga	amma	ı fun	ction	is and
their properties, I	Multiple integrals, Arc length of parametric curves, Application	of def	finite	int	egrals
to evaluate surface	e areas and volume of solids of revolution				
Total Lecture he	ours		6	60 ho	urs
Text Book(s)					
1. Dickson,	L. E., First Course in the Theory of Equations. John Wiley & So	ons, Ir	nc. N	ewY	ork.
The Proje	ct Gutenberg EBook (1922)				
2. Thomas C	G.B. and Finney R.L., Calculus, 9th Ed., Pearson Education, Dell	ni (20	14)		-
3. Spiegel N	I. R., Schaum's outlines Vector Analysis, Tata McGraw Hill (Ed	ucati	on) I	ndia	Pvt.
4 Bartle Ro	bert G Sherbert Donald R Introduction to Real Analysis John	Wile	•v &	Son	s Inc
NewYork	(2000)	** 110	Jy u	Don	s, me.
Reference Book	S				
1. Strauss M	I. J., Bradley G. L. and Smith, K. J. Calculus (3rd Edition), Dorli	ng Ki	inde	sley	
(India) Pr	rt. Ltd. (Pearson Education), Delhi, (2007).				
2. Narayan	S., Mittal P. K., A Text Book of Vector Analysis, S. Chand Publi	shing	g, Uti	ar	
Pradesh (1933) & Mukheriee B. N. Integral Calculus, H. N. Dhur and Sons Pyt.	I td	Koll	cata	
J, D as D , C ,	a maximulger D. 11., integral calculus, O. 11. Dilut and 50115 I VI.	Liu,	12011	suid	

Hathkhowapara, Azara, Guwahati-781017, Assam

			Т	т	D	C
SEM	ESTER III	DIFFERENTIAL EQUATIONS	3	1	0	4
Pre-r	requisite: Kn	owledge of Mathematics at Class XI & XII				
Cour	se Objective	s:				
Т	o introduce th	ne students to the exciting world of ordinary differential equ	uatio	ns,		
m	nathematical 1	nodeling and their applications.				
Cour	se Outcome:					
After s	successful con	npletion of the course, the students will be able to				
CO 1:	learn basics	of differential equations and mathematical modelling.				
CO 2: solve first order non-linear differential equations and linear differential equations of						
higher order using various techniques.						
Module 1: First Order Ordinary Differential Equations 30				30H	ours	
Linear equations and Bernoulli equations, Orthogonal trajectories and oblique trajectories;				Basic		
theor	y of higher	order linear differential equations, Wronskian, and its	prop	erties	s; So	lving
differ	rential equation	on by reducing its order.				-
Mod	ule 2: Second	l Order Linear Differential Equations			30 H	ours
Linea	ar homogeno	us equations with constant coefficients, Linear non-home	ogen	ous e	equat	ions,
The m	ethod of varia	ation of parameters, The Cauchy-Euler equation, Simultane	eous o	diffe	rentia	ıl
equati	ons.					
Tota	l Lecture hou	ırs			60 ho	ours
Text	Book(s)					
1.	Simmons G	B. F., Differential Equations with applications 3 rd Edition, C	RC I	Press	,	
	Chapman ar	nd Hall Book (2017)				
2.	Sneddon, I.	N. Elements of Partial Differential Equations, Dover Publi	catio	ns. Ii	ndian	1
	Reprint (200	06)				
Refe	rence Books					
1.	Raisinghani	a M. D., Advanced Differential Equations, S. Chand & Co	mpar	ny Pv	vt. Lto	t
	(2014)					
2.	Ahsan, Z. D	ifferential Equations and their Applications, 2nd Ed., PHI,	Pvt.	Ltd.,	New	1

Delhi (2004).

• Mathematics as a Single Minor

PAPERS	TITLE
Minor I	NUMERICAL ANALYSIS
Minor II	COMPLEX ANALYSIS
Minor III	BASIC STATISTICS

Minor I	NUMERICAL ANALYSIS	L	Т	Р	С
		3	1	0	4
Pre-requisit	e: Knowledge of Mathematics at Class XI & XII				
Course Obj	ectives:				
1. To trai	n students to understand why the methods work, what type of errors to	expe	ct, an	ld wh	en an
applica	ition might lead to difficulties	aluat	tha		~
2. To lea	in wen-known numerical techniques to solve physical problems and ev	aiuate	ettie	lesuit	5
After success	ful completion of the course, the students will be able to				
CO 1 calcul	ate the errors, source of error and its effect on any numerical con	nniita	tions		
CO^2 : compute the values of a tabulated function at points not in the table					
CO3: apply numerical methods to obtain approximate solutions to mathematical problems					
CO4: learn h	low to solve problems of definite integrals numerically.				
Module 1: I	Error Analysis		(6 Ho	urs
Errors, Differ	ent type of errors. Representation of numbers in computer, Co	ompu	ter a	rithn	ietic,
Zeros in float	ing point number.				
Module 2: H	Sinite Differences			20 H	ours
Operators –f	nite differences, average, differential, etc., their inter-relative	ons.	Diff	erenc	e of
polynomials,	Interpolation, Uniqueness of interpolating polynomial, New	ton's	for	ward	and
backward inte	rpolation formulae, Newton's divided difference formula, Lagra	nge's	inte	rpola	tion
formula, Inve	rse interpolation, Central difference, Errors in different interpolat	tion f	ormu	ilae.	
Module 3: N	umerical Integration			10 H	ours
Quadrature: formulae.	Trapezoidal rule, Simpson's quadrature (1/3 and 3/8 rule). E	error	in Ç	uadr	ature
Module 4: S	olutions of Equations			24 H	ours
Solution of a	algebraic and transcendental equation: Bisection method, Re	egula	-falsi	i me	thod,
Iteration meth	od, Newton-Raphson method and its geometrical interpretation.	Solu	tion	of sy	stem
of equations:	Gauss elimination method, Gauss Seidal Method, Gauss Jordan	netho	od.		
Total Lectu	re hours		(60 ha	ours
Text Book(s)				
1. Gerald	C. F. and Wheatley P. O., Applied Numerical Analysis, Pearson	1, 7th	Edit	ion	
(2004)					
2. Jain N	I. K., Iyengar S., Jain R. K., Numerical Methods for Scientific an	ıd			
Engin	eering Computation, New Age International Publishers, 6th editi	on (2	012)		
Reference B	ooks				
1. B. S. C	Grewal, Numerical Methods in Engineering & Science, Khanna H	Publis	shers	, Del	hi
(2013)				_	

2. F. Scheid, Schaum's outline of theory and problems of numerical analysis, McGraw Hill Professional, (1988)

B. ASSAM . A	a matikilowapara, Azara, Guwanati-761017, Assan	1			
Minor II	COMPLEX ANALYSIS	L	T	P	С
		3	1	0	4
Pre-requisite	e: Knowledge of Mathematics at Class XI & XII				
Course Obje	ctives:				
I. To stu	dy the techniques of complex variables and functions together with the	eir de	rivati	ves.	
2. To inv	estigate theorems in Complex Integrals.				
Course Outo	ome:				
After successf	ul completion of the course, the students will be able to				
CO 1: analyze	e limit, continuity and differentiation of functions of complex variables	riable	es, ur	nders	and
Cauchy	y-Riemann equations, analytic functions and various properties ons.	of ana	alytic	C	
CO2: underst	and integral formulae and apply these to evaluate complex conto	our in	tegra	als.	
represe	ent functions as Taylor and Laurent series and the convergence of	f pov	ver se	eries	
Module 1: C	Complex Differentiation and Cauchy Riemann Equation			30 H	ours
Properties of	complex numbers, regions in the complex plane, functions of co	mple	x vai	riable	·,
Mappings. Li	nits, continuity, Derivative of a complex function, Differentia	ation	form	nulae	•
Analytic func	tion, Elementary analytic functions (exponential, trigonometric	ric, l	ogari	ithm)	,
Cauchy-Riema	ann equations, Sufficient conditions for differentiability, Harmon	nic fu	nctio	ons,	
Milne-Thomp	son method.				
Module 2: C	omplex Integration and Cauchy's Theorem			30 H	ours
Complex Lin	e integral, Real line integral, Simply and Multiply connecte	d reg	gions	. Gre	en's
theorem in the	e plane (Complex form), Cauchy's theorem, Cauchy - Goursat	theo	rem,	Mor	era's
theorem, conse	equences of Cauchy's theorem, Cauchy's integral formulae, Lio	uville	e's th	eorei	n
and the fundat	nental theorem of algebra. Convergence of sequences and series	s, Ta	ylor :	series	and
its examples. I	Laurent series and its examples, absolute and uniform convergen	ce of	pow	er se	ries.
Total Lectur	re hours			60 ha	ours
Text Book(s)					
1. Speigel	M.R., Schaum Outline Complex Variables, McGraw Hill Comp	oanie	s Inc	. (200)9)
Reference B	ooks				
1. Brown	J. W. and Churchill R. V., Complex Variables and Applications	s (Eig	ghth]	Editio	on),
McGra	w – Hill International Edition, (2009)		-		
L					

		т	т		C
Minor III	BASIC STATISTICS	<u>L</u> 3	<u>1</u> 1	r 0	4
Pre-requisite	e: Knowledge of Mathematics at Class XI & XII	-			
Course Obje	ctives:				
1. To ma	ake the students familiar with the basic statistical concepts and to	ools v	whick	n are	
neede	d to study situations involving uncertainty or randomness.				
2. To rea	nder the students to several examples and exercises that blend th	eir e	veryc	lay	
exper	iences with their scientific interests.				
Course Outc	ome:				
After successf	ul completion of the course, the students will be able to				
CO I: learn	about probability and moment generating functions.	n al d	: at mile	ntion	
CO 2: Know	about various distributions such as Binomial, Poisson and Non	nai u	form	ulloti	is.
CO 5. Illeas	ng to predict one variable in terms of the other i.e. correlation	sii a and li	inoor	ulatio	Л
regre	ssion	and n	mear		
logic					
Module 1: I	ntroduction to Probability			15 H	ours
Random exp law of probabi	eriment, Sample space, Events, Definition of probability and e lity, Conditional probability, Baye's Theorem	exam	ples,	Add	ition
Module 2: R	andom Variable			15 H	ours
Random Vari	able, Probability distribution: Discrete and Continuous, Mea	n an	d Va	rianc	e of
probability dis	tribution, Binomial distribution, Poisson's and Normal distribut	ion			
Module 3: In	troduction to Statistics		1	5 Ho	urs
Measures of	central Tendency, Measures of dispersion, Moments and r	nom	ent g	gener	ating
function, Skev	vness and Kurtosis				
Module 4: Bi	variate Data		1:	5 Ho	ırs
Bivariate data	a: Definition, Scatter diagram, Simple and multiple correlation	, Ra	nk co	orrela	tion,
Simple linear l lines.	Regression, Lines of regression, Principle of least squares and fin	tting	of sti	raigh	t
Total Lectur	e hours		(60 ha	ours
Text Book(s)					
1. Hogg R. V Pearson F	V., McKean J.W., & Craig A. T., Introduction to Mathematical S	Statis	tics (7th e	d.).
2 Miller I &	x Miller M John F. F. Mathematical Statistics with Application	ne (81	h ed)	
2. Willer I. & Pearson I	Orling Kindersley (India) (2014)	15 (01	in cu.	.),	
3 Ross S M	Introduction to Probability Models (11th ed.) Elsevier Inc. (20	014)			
Reference B	ooks				
1. Mood, ed.). M	A. M., Graybill, F. A. & Boes, D. C., Introduction to the Theory CGraw-Hill Education Pvt. Ltd. Indian Edition (2017)	v of S	tatis	tics (3rd

• <u>Multidisciplinary Courses to be offered from Dept. of Mathematics</u>

Semester	Courses	Credit
Ι	Foundation of Mathematics	3
II	Combinatorics, Partial Fractions and Measures of	3
	Central Tendency	
III	Introduction to programming with MATLAB	3

DETAILED SYLLABUS

MDC-I	Foundation of Mathematics	L	Т	Р	С	
		2	1	0	3	
Pre-requisi	te: Knowledge of Mathematics at high school					
Course Objectives:						
1. To describe the relations between sets regarding membership, equality, subset, and proper subset using proper notation						
 To draw and interpret set relations and operations and use those to solve problems To explain and interpret the concepts of divisibility and number theorems. 						
Course Out	Course Outcome:					
After succe CO 1: unde CO 2: use 1 sets 1 CO 3: solv	 After successful completion of the course, the students will be able to CO 1: understand sets, relations, functions and discrete structures. CO 2: use logical notations to define and reason about fundamental mathematical concepts such as sets relations and functions CO 3: solve system of linear equations with the help of the knowledge from number theory 					
and Modulo 1.	can be able to establish logical relationship between a set of hun	ibers	1	15 Hc	nire	
operations. sets. Set ide	Classes of sets. Power set of a set. Difference and Symmetre entities, Generalized union and intersections.	ric di		nce (15 Ho)	of two	
Due due 4	Comparision of matrices Terror of matrices Francisco de					
their proper	ties, Composition of functions. Types of relations, Functions, ty	ypes	OF IU	inctio	ons and	
Module 3:	Basic Number Theory		1	15 Ho	ours	
Well-order algorithm,	ng property of positive integers, Division algorithm, Divis Fundamental Theorem of Arithmetic, Principles of Mathematica	ibilit 1 Ind	y an uctio	d Eu n.	clidean	
Total Lectu	re Hours		4	45 ho	urs	
Text Book(I			
 Lipschutz S., Schaum's Outline-Theory and Problems of Set Theory and realted topics (Ebook), McGraw Hill Companies Inc. (1964) Conradie, W., Goranko, V., Logic and Discrete Mathematics: A Concise Introduction, Wiley 						
3. Sarl	ar, S.K. A Textbook of Discrete Mathematics, S. Chand & Co. Ltd.	New	/ Dell	hi		

		T	m	n	0	
MDC-II	Combinatorics, Partial Fractions and Measures of Central	L 2	1	P	2	
	Tendency	2	I	U	3	
Pre-requisite: Knowledge of Mathematics at high school						
Course Objectives:						
1. To motivate students towards intrinsic interest in statistical thinking						
2. To apply the Fundamental principle of counting to find out the total number of						
outcomes in problem						
3. To en	able students to split the fractions into numerous sub fractions.					
Course Outco	me:					
After successful completion of the course, the students will be able to						
CO 1: understand how to apply basic counting techniques to solve combinatorial problems						
CO 2: recogn	ize simple or repeated linear factors along with quadratic factors	s in a	ratic	nal		
function.						
CO 3: define and calculate mean, median, mode.						
Module 1: Combinatorics and recurrence relations			-	15 Hours		
Permutations,	Combinations, permutations with repetitions, combinations with	n repe	etitio	ns,		
recurrence relations and their solutions.						
Module 2: Partial Fraction			-	15 Hours		
Polynomial, Rational Fraction, Proper and Improper fractions, Partial fractions, resolving into						
partial fraction	IS					
Module 3: Measures of Central Tendency		-	15 Hours			
Measures of Central Tendency: Mean, Median and Mode. Applications, Advantages and						
disadvantages	of Mean, Median and Mode.	U				
Total Lecture Hours		4	45 ho	urs		
Text Book(s)						
1. Barnard S., Child J.M, Higher Algebra (Ebook), Macmillan & Co Ltd (1959)						
Reference Book(s)						
1. Hall H. S., Night S. R., Higher Algebra, Arihant Publications Ltd, Meerut (2016)						

	Introduction to Programming with MATLAB	T	т	P	С	
MDC-III		2	1	0	3	
Pre-requisite:	Pre-requisite: Basic idea of mathematics					
Course Objectives:						
1. To impart the knowledge to the students with MATLAB software.						
2. To enhance programming knowledge in Research and Development.						
Course Outco	me:					
After successful completion of the course, the students will be able to						
CO 1: use basic commands of MATLAB						
CO 2: understand the basics functions of MATLAB						
CO 3: plot th	e 2D, 3D figures					
Module 1: Introduction to MATLAB				15 Ho	ours	
Getting help with commands in MATLAB, Vector and matrix generation, Subscripting and the colon						
notation, matrix	x and array operations and their manipulations, introduction to so	me ii	nbuil	t func	tions	
related to array	operations. m-files: scripts and functions, editing, saving m-files, and	d inte	ractio	on bet	ween	
them.						
Module 2: Simple graphics in MATLAB				15 Ho	ours	
Plotting of gr parametric cur	aphs of function, Plotting the graphs of polynomial of degree ves	4 and	d 5,	Sketc	hing	
Module 3: Two & three-dimensional graphics			15 Ho	ours		
Basic plots, ch	ange in axes and annotation in a figure, multiple plots in a figure,	savi	ng ai	nd pri	nting	
figures, mesh p	lots, surface plots and their variants e.g., contour plots, sphere, and an	imati	ons.			
Total Lecture Hours		,	45 ho	urs		
Text Book(s)						
1. Gilat A., MATLAB: An Introduction with Applications, 4th edition, Wiley; Fourth edition, (2012)						
Reference Bo	ok(s)					
1. Pratap Oxfor	R., Getting Started with MATLAB: A Quick Introduction for Scienti d, (2010)	sts &	Engi	neers	,	

• Mathematics as a Major

SEMESTER	DSCC (Credit)
Ι	1. Algebra and Calculus I (4)
II	2. Algebra and Calculus II (4)
III	3. Differential Equations (4)
IV	4. Complex Analysis (4)
	5. Real Analysis I (4)
	6. Group Theory (4)
	7. Elective I-
	Sets and Logic/Introduction to Probability (4)
V	8. Finite Differences & Vector Calculus (4)
	9. Analytic Geometry (4)
	10. Ring Theory (4)
	11. Elective II-
	Introduction to Statistics/
	Discrete Mathematics (Graph Theory + Number Theory) (4)
VI	12. Mechanics (4)
	13. Real Analysis II and Metric Spaces (4)
	14. Linear Algebra (4)
	15. Elective III-
	Numerical Analysis/ R Programming (4)
	16. Elective IV-
	Operation Research/
	Spherical Trigonometry and Astronomy (4)
VII	17. Mathematical Transforms (Laplace & Fourier) and Integral
	Equations (4)
	18. Project I (4)
	19. Research Methodology (4)
	OR
	20. Elective V:
	General Topology / Ordinary Differential equation of higher
	order (4)
	21. Elective VI:
	Advanced Abstract Algebra / Tensor Analysis (4)
VIII	22. Graph Theory/ Partial Differential Equations with Lab (4)
	23. Fuzzy sets and their applications/ Special Theory of
	Relativity /Number Theory (4)
	24. Theory of Random Processes / Fluid Dynamics/ Mathematics for
	25 Project II (8)
	OR 26 Any two courses (each of gradit 1) from the following list:
	(Continuum Mechanics, General Theory of Relativity, Waya theory
	Functional Analysis Lebesgue Measure Dynamical System)
l	