Girijananda Chowdhury University, Assam

Course Structure and detailed syllabi for three semesters for

Four Year Under Graduate Programme (FYUGP) in Physics

			SU	MMARIS	ED COU	<mark>RSE STRU</mark>	CTURE		
SEM	DSC (Major)	DSC (Minor)	MDC	AEC	SEC	VAC	Internship/ Dissertation/ project	Credit	Exit option
	(1914)								
Ι	4	4+4	3	2	3	2		22	Certification
II	4	4+4	3	2	3	2		22	
III	4	4+4	3	2	3	-		20	Diploma
IV	16	-	-	2		2		20	
V	16	-	-		-		4	20	Bachelor
VI	20	-	-	-	-	-		20	Degree
Credit							Total	124	
VII	8	4+4	-	-		-	- Project/Dis sert ation I (4)/ Core(4)	20	Bachelor Degree (Honours)/ Honours
VIII	12	-	-	-		-	- Project/Diss ert ation II (8)/ Core(4+4)	20	(with Research)
Credit	<u> </u>				I		Total	164	

	YEAR – 1				
	First Semester				
Code	Course	Category of	L-T-P	Total	
		Course		Credit	
	Introductory Physics	Core	4-0-0	4	
	*MINOR-1	Minor	4-0-0	4	
	*MINOR-2	Minor	4-0-0	4	
	**MDC-I	MDC	3-0-0	3	
	AEC-I	AEC	2-0-0	2	
	SEC-I	SEC	3-0-0	3	
	VAC-I	VAC	2-0-0	2	
	·		TOTAL	22	

	Second Semester					
Code	Course	Category of	L-T-P	Total		
		Course		Credit		
	Physics in Everyday Life	Core	4-0-0	4		
	*MINOR-3	Minor	4-0-0	4		
	*MINOR-4	Minor	4-0-0	4		
	**MDC-II	MDC	3-0-0	3		
	AEC-II	AEC	2-0-0	2		
	SEC - II	SEC	3-0-0	3		
	VAC -II	VAC	2-0-0	2		
			TOTAL	22		

EXIT OPTION WITH CERTIFICATION. However, such students who desire to exit after 1 year of study need to undertake a vocational course (4 credits).

*Refer AnnexureI, **Refer AnnexureII

$\mathbf{YEAR} - \mathbf{2}$

	Third Semester					
Code	Course	Category of	L-T-P	Total		
		Course		Credit		
	Mathematical Physics-I	Core	3-0-2	4		
	*MINOR-5	Minor	3-0-2	4		
	*MINOR-6	Minor	4-0-0	4		
	**MDC-III	MDC	3-0-0	3		
	AEC – III	AEC	2-0-0	2		
	SEC - III	SEC	3-0-0	3		
			TOTAL	20		

	Fourth Semester					
Code	Course	Category of	L-T-P	Total		
		Course		Credit		
	Mechanics	Major/core	4-0-0	4		
	Electricity and Magnetism	Major/core	4-0-0	4		
	Mechanics-Lab	Major/core	0-0-4	2		
	Electricity and Magnetism-Lab	Major/core	0-0-4	2		
	***Elective-1	Major/core	4-0-0	4		
	AEC-IV	AEC	2-0-0	2		
	VAC-III	SEC	2-0-0	2		
	1	L	TOTAL	20		

* Refer Annexure-I, ** Refer Annexure-II, ***Refer Annexure-III

EXIT OPTION WITH DIPLOMA. However, such students who desire to exit after 2 years of study need to undertake a vocational course (4 credits).

YEAR – 3

	Fifth Semester						
Code	Course	Category of Course	L-T-P	Total Credit			
	Semiconductor Physics	Major/core	4-0-0	4			
	Waves and Optics	Major/core	4-0-0	4			
	Semiconductor Physics-Lab	Major/core	0-0-4	2			
	Waves and Optics-Lab	Major/core	0-0-4	2			
	***Elective-2	Major/core	4-0-0	4			
	Internship	Major/Core	0-0-8	4			
			TOTAL	20			

***Refer Annexure III

	Sixth Semester					
Code	Course	Category of	L-T-P	Total		
		Course		Credit		
	Thermal Physics	Major/core	4-0-0	4		
	Electronics	Major/core	4-0-0	4		
	Quantum Mechanics	Major/core	4-0-0	4		
	Thermal Physics- Lab	Major/core	0-0-4	2		
	Electronics-Lab	Major/core	0-0-4	2		
	***Elective-3	Major/core	4-0-0	4		
		1	TOTAL	20		

***Refer Annexure III

EXIT OPTION WITH THREE YEARS BACHELOR'S DEGREE

(A)FOUR YEARS BACHELOR'S DEGREE (HONOURS)

	Seventh Semester						
Code	Course	Category of Course	L-T-P	Total Credit			
	Condensed Matter Physics	Major/core	3-0-2	4			
	Research Methodology	Major/core	4-0-0	4			
	***Elective-4	Minor	4-0-0	4			
	*MINOR-7	Minor	3-0-2	4			
	*MINOR-8	Major/core	4-0-0	4			
		1	TOTAL	20			

*Refer Annexure I, *** Refer Annexure III

	Eight Semester			
Code	Course	Category	L-T-P	Total
		of Course		Credit
	Electromagnetic Theory	Major/core	3-0-2	4
	Statistical Mechanics	Major/core	3-0-2	4
	Modern Physics	Major/core	3-0-2	4
	Introductory Astrophysics	Major/core	4-0-0	4
	Mathematical Physics-II	Major/core	3-0-2	4
			TOTAL	20

EXIT OPTION WITH FOUR YEARS BACHELOR DEGREE (HONOURS)

(B)FOUR YEARS BACHELOR'S DEGREE (HONOURS WITH RESEARCH)

	Seventh Semester			
Code	Course	Category	L-T-P	Total
		of Course		Credit
	Condensed Matter Physics	Major/core	3-0-2	4
	Research Methodology	Major/core	4-0-0	4
	Research Project(Phase-I)	Minor	0-0-8	4

*MINOR-7	Minor	3-0-2	4
*MINOR-8	Major/core	4-0-0	4
		TOTAL	20

*Refer Annexure I

	Eight Seme	ester		
Code	Course	Category	L-T-P	Total
		of Course		Credit
	Electromagnetic Theory	Major/core	3-0-2	4
	Statistical Mechanics	Major/core	3-0-2	4
	Modern Physics	Major/core	3-0-2	4
	Research Project(Phase-II)	Major/core	0-0-16	8
	1		TOTAL	20

EXIT OPTION WITH DEGREE (HONOURS WITH RESEARCH)

LIST OF COURSES:

ANNEXURE-I: (MINOR COURSES)							
Course	Name of the Course	Semester	L-T-P	Total			
				Credit			
MINOR-1	Introductory Physics	Ι	4-0-0	4			
MINOR-2	Renewable Energy Resources	Ι	4-0-0	4			
MINOR-3	Physics in Everyday Life	II	4-0-0	4			
MINOR-4	Atmospheric Physics	II	4-0-0	4			
MINOR-5	Mathematical Physics-I	III	3-0-2	4			
MINOR-6	Sports Science	III	4-0-0	4			
MINOR-7	Mechanics	VII	3-0-2	4			
MINOR-8	Electricity and Magnetism	VII	3-0-2	4			

ANNEXURE-II: (MDC COURSES)							
CourseName of the CourseSemesterL-T-PTotal							
				Credit			
MDC-1	Physics For All	Ι	3-0-0	3			

MDC-2	Physics of Earth	II	3-0-0	3
MDC-3	Indian Contribution to Science	III	3-0-0	3

ANNEXURE-III: (ELECTIVE COURSES) (any one course from the options, a and b or a, b, c) Course Name of the Course Semester L-T-P Total							
Course	CourseName of the CourseSemester						
				Credit			
Elective-1	(a) Laser and Nonlinear Optics	IV	For (a)	4			
	(b) Computational Physics	-	and (c)				
	(c) Introduction to Nanoscience		4-0-0				
			For (b)				
			2-0-4				
Elective-2	(a) Spectroscopy	V	4-0-0	4			
	(b) X-ray Crystallography	-					
Elective -3	(a) Plasma Physics	VII	4-0-0	4			
	(b) Sustainability Science						
Elective -4	(a) Nuclear Physics	VIII	4-0-0	4			
	(b) Advanced Quantum Mechanics						

Detailed Syllabi for three semesters:

SEMESTER-I

DSCC	Introductory Physics	L	Т	Р	С			
(Major+Minor)	(Major+Minor)		0	0	4			
Pre-requisite: Bas	Pre-requisite: Basic Science							
Course Objective	Course Objectives:							
1. To provide	the fundamental knowledge of measurements and dimensions							
2. To enable properties.	2. To enable students to develop an understanding of different types of matter and their properties.							
3. To make s	tudents familiar with motion, force and work from the point of w	view o	of Phy	/sics				
4. To introdu	ce the basic ideas about sound propagation through various med	lia.						
Course Outcome:								
After successful co	ompletion of the course, the students will be able to							
CO1: measure som	CO1: measure some physical properties of matter.							
CO 2: understand	CO 2: understand the fundamental properties of matter.							
CO 3: grasp the fu	CO 3: grasp the fundamental concepts of motion, force and work and gravitation							
CO 4: understand	the basics of sound propagation							

Physics and its scope, Units and Measurements, Errors in Measurements, Dimensional A	nalveie
	111a1 y 515
Activity :	
) To measure fundamental quantities - length (using slide calipers), diameter (using sci	rew gauge),
ime (using stop clock), weight (using physical balance)	
Module 2: MATTER – NATURE AND BEHAVIOUR	20 hours
Definition of matter, solid, liquid and gas, characteristics - shape, volume and densi	ty, change of
tate – melting (absorption of heat, freezing, evaporation, condensation, sublimation	
Elements, compounds and mixtures – heterogeneous and homogeneous mixtures	
Atoms and molecules, Chemical formula for common compounds, atomic and molecula	r masses
Electrons, protons and neutrons, valency, atomic number and mass number, isotopes and	l isobars.
Activity :	
) Determination of melting point of ice and boiling point of water.	
2) Preparation of mixture and compound	
Module 3: MOTION, FORCE AND WORK	22 hours
Distance and displacement, velocity, uniform and non-uniform motion along a straight li	ine,
cceleration, distance-time and velocity-time graphs for uniform motion and uniformly a	accelerated
notion, elementary idea of uniform circular motion.	
Gravitation, Universal Law of Gravitation, force of gravitation of the earth (gravity), acc	eleration due
o gravity, mass and weight, free fall	
Work done by a force, energy, power, kinetic and potential energy, Law of conservation	of energy
excluding commercial unit of energy)	
Module 4: SOUND	10 hours
Nature of sound and its propagation through various media, speed of sound, range	of hearing in
numans, ultrasound, reflection of sound, echo	
Fotal Lecture hours	60 hours
Activity :	
) Determination of melting point of ice and boiling point of water.	
2) Preparation of mixture and compound.	
Text Book(s)	
Science Textbook for classes IX and X, NCERT Publication	
2. Physics, Part I for class XI, NCERT Publication	
Reference Books	
. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker, (John V	Wiley & Sons

DS	CC	Denowable Enorgy Descurress	L	Т	Р	С	
(Minor)		Renewable Energy Resources	4	0	0	4	
Pre-re	Pre-requisite: Basic Science						
Cours	e Objec	tives:					
1.	To pro	vide knowledge about the depleting non-renewable energy sources a	and al	terna	tive		
	energy	sources					
2.	To ena	ble students to develop an understanding of the different application	ns of r	enew	able		
	energy	7					
3.	3. To make students aware of wind energy and its harvesting and solar energy						
4.	4. To develop fundamental idea regarding ocean energy and its potential as an energy resource.						
5. To provide fundamental knowledge regarding geothermal energy and hydro energy.							
Cours	e Outco	ome:					

After successful completion of the course, the students will be able to CO1: understand and appreciate the need to shift to renewable energy resources CO 2: understand the fundamentals of solar energy generation CO 3: understand the harvesting of wing energy CO 4: develop fundamental ideas about energy in the ocean waves CO 5: develop fundamental knowledge regarding geothermal energy and hydro energy. Module 1: FOSSIL FUELS AND ALTERNATE SOURCES OF ENERGY 9 hours Fossil fuels and nuclear energy and their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in offshore wind energy, tidal energy, wind energy systems, solar energy, biomass, biochemical conversion, biogas generation, hydroelectricity **Module 2: SOLAR ENERGY** 18 hours Solar energy, its importance, storage of solar energy, solar pond, solar water heater, solar cooker, solar green houses, solar cell, absorption air conditioning, need and characteristics of photovoltaic(PV) systems, PV models and equivalent circuits, sun tracking systems. **Activity :** 1) To build a solar greenhouse 2) To build a solar box cooker Module 3: WIND ENERGY HARVESTING 18 hours Fundamentals of wind energy, wind turbines and different electrical machines in wind turbines, power electronic interfaces and grid interconnection topologies, wind energy conversion, wind mill, basic components of wind mill conversion system, types of wind mills, conversion and efficiency. Activity : 3) To construct a vertical wind turbine. Module 4: OCEAN ENERGY 8 hours Ocean energy potential against wind and solar, wave characteristics and statistics, wave energy devices. Tide characteristics and statistics, tide energy technologies, ocean thermal energy, osmotic power, ocean bio-mass 7 hours Module 5: GEOTHERMAL ENERGY AND HYDRO ENERGY Geothermal resources, geothermal technologies Hydropower resources, hydropower technologies, environmental impact of hydro power sources. **Total Lecture hours** 60 hours Text Book(s) Non-conventional Energy Sources - G. D Rai, Khanna Publications, 2001 1. Non-conventional Energy Resources – B. H. Khan, McGrae Hill, 3rd edition, 2017 2. **Reference Books** Solar Energy – Suhas P. Sukhative, Tata McGraw Hill Publishing Company Limited. 1. Wind Energy System - Gary L. Johnson, Printice Hall Inc., New Jersey, 1985. 2. Τ I T P C

MDC	PHYSICS FOR ALL	L	L	L	C			
WIDC	FHISICS FOR ALL	3	0	0	3			
Pre-requisite: Preliminary concept of Science and Mathematics.								
Course Objective								
(1)To enhance	e the fundamental knowledge of systems of units to be used in dai	ly life						
(2) To have a	broader concept of laws to understand planetary motion, satellites	and C	Globa	1				
Positioning S	ystem.							
(3)To enhance	e the knowledge of basics heat and thermodynamics and understan	ding ł	oasic	s of				
home appliant	home appliances.							
(4) To enhance the knowledge of sound and its propagation.								
(5) To develo	(5) To develop the concept of different phenomena associated with light.							
a o i								

After successful completion of the course, the students will be able

CO1: to understand different systems of units and their inter-conversion relations.

CO 2: to learn the basics of kinematics to relate with satellites and Global Positioning System. CO 3: to understand the basic theory of heat, temperature, different scales and few household appliances.

CO 4: to understand sound, its

CO 5: propagation to understand different phenomena of light and relate with nature and objects.

	dule 1: Units and Measurements	10 hours
CG	S, FPS, MKS, SI system of units, their inter conversion relations, Dimensional	
for	mula of physical quantities. Dimension analysis and its applications to simple	
pro	blems, Problems on conversion among system of units, . Measured value and	
abs	olute value; Accuracy and Precision, Error in measurement and its Types, Error	
esti	mation formulae.	
Mo	dule 2: Mechanics	10 hours
Sc	alar and Vector quantities, distance, displacement, speed, velocity, acceleration,	
Cir	cular motion, rotational motion, preliminary idea of angular displacement,	
vel	ocity, Planetary motion, Gravitational force, acceleration due to gravity in	
	erent places, concept of inertia, Newton's laws, natural and artificial satellites,	
	mples, introduction to global positioning system	
	dule 3: Heat	9 hours
Co	ncepts of Heat and Tempearture, Units of temperature: Centigrade, Fahrenheit and	l Kelvin
sca	le, their inter-conversion formulae, Heat transfer processes: conduction, convection	on and
rad	iation, explanation of change of states of matter, working principles of Refrigerat	or, Air
	nditioner, Microwave Oven.	
Mo	dule 4: Sound	8 hours
Lo	ngitudinal nature of sound, Frequency, and its unit and Pitch, Loudness and Intens	ity,
Pro	duction and detection of sound, Audible frequency range, infrasonic and ultrason	ic sounds,
No	ise and Music, Principle of Loudspeaker and Microphone, vibration and production	on of
sou	nd in Musical Instruments	
Mo	dule 5: Light	8 hours
Ret	lection, Refraction and Dispersion of light, Application of formation of images by	/ plane
mir	ror, convex and concave mirror, formation of rainbow, scattering of colours durin	g sunrise
and	sunset, blue colour of sky, light production in bulb, different types of light bulbs,	Laser,
	D, Solar spectrum	
Tot	al Lecture hours	45 hours
Tey	t Book(s)	
1.	Conceptual Physics, Paul G. Hewitt, Pearson Education, 2017.	
2	Physics Made Simple: A complete Introduction to the basic principles of this fu	ndamental
-	science, Christopher G. De Pree, Crown Publisher, 2005	
	Concept of Physics, H.C Verma, Bharat Bhawan Publisher, 2021	
3.		
	erence Books	
	Gerence Books The Basics of Physics, Rusty L. Myers, Greenwood Press, 2005	

SEMESTER-II

DSCC	PHYSICS IN EVERYDAY LIFE	L	Т	Р	С
(major+ minor)		4	0	0	4
Pre-requisite: Pr	reliminary concept of Science and Mathematics				
Course Objectiv					
	e fundamental knowledge of laws of motion which is helpful to	unde	erstan	d the	
	ated activities of life.				
	verview of heat and temperature in understanding the theory beh	ind th	hermo	omete	ers,
woodstoves etc.					
· · · ·	concept on sound waves to relate with different instruments.			1 1.0	
	e awareness about electricity and magnetism to relate the theory	to p	ractic	al lif	e.
	e theory of light propagation, formation of images, lasers etc.				
Course Outcome					
	completion of the course, the students will be able				
	ne Newton's laws to understand various activities of motion.				
	tand the concept of heat and temperature in understanding ter	npera	ature	scale	s
and phases.					
	he basics of sound waves in musical instruments.				
	tand the concepts of electricity, magnetism and its relevance		•		
	tand the basics of scattering of light, formation of images, las	ers a	nd op	otical	
fibres.					
Madala 1. The l	and of motion		1	15 ho	
Module 1: The l				15 110	urs
	vector quantities, position, velocity, force, acceleration, mass, n	et			
	first and second laws, inertial frames of reference, unit				
	gravity, weight, uniform acceleration, projectile motion, vector port forces, Newton's third law, energy, work, conservation of e	mara	.,		
	itial energies, gravitational potential energy, ramp & its mechan		у,		
advantage	inal energies, gravitational potential energy, ramp & its meetian	icai			
•	nal inertia; angular velocity; torque; angular acceleration; rotatio	mal			
	Newton's first, second, and third laws of motion; centres of ma		h		
gravity; levers; b		155 an	iu -		
	ce Travel: reaction forces, law of universal gravitation, elliptical	1			
<u>+</u>	locity, Kepler's laws, speed of light, concepts of general and spe				
relativity, equiva		Jului			
	o be done with related experiments)				
	and Temperature		1	l0 ho	ours
	energy, Heat and Temperature, different scales of measuring				
temperature & th					
-	ermal equilibrium, chemical bonds and reactions, conduction, th	erma	1		
	vection, radiation, heat capacity	UIIII			
-	d Ice: phases of matter, phase transitions, melting, freezing,				
	aporation, relative humidity, latent heats of melting and evapora	tion.			
	osition, boiling, Airconditioners.	,			
· · · · · · · · · · · · · · · · · · ·	o be done with related experiments)				
(Explanation is t				10 ho	ours
(Explanation is t Module 3: Soun	d				
Module 3: Soun	d otion, transverse and longitudinal waves.				
Module 3: Soun Waves: wave mo	otion, transverse and longitudinal waves.	ic m	otion	and i	ts
Module 3: Soun Waves: wave mo	otion, transverse and longitudinal waves. d space, natural resonance, harmonic oscillators, simple harmon	ic mo	otion	and i	ts
Module 3: Soun Waves: wave mo Clocks : time an frequency, perior	otion, transverse and longitudinal waves. d space, natural resonance, harmonic oscillators, simple harmon				ts

trove	ling waves; transverse and longitudinal waves; velocity and wavelength of mechanic	ical
	s; superposition, different types of musical instruments	ical
	anation is to be done with related experiments)	
		15 hours
	lle 4: Electricity and magnetism	
	Electricity: electric charge, electrostatic forces, Coulomb's law, electrostatic poter	
	y, voltage, charging by contact, electric polarization, electrical conductors and insul	
	nt: electric current; electric circuits; direction of current flow; electrical resistance;	
-	; voltage rise; relationship among current, voltage, and power; Ohm's law; resistors	and their
	and parallel combinations.	
	ehold Magnets: earth as a magnet, magnetic pole, magnetostatic forces, Coulomb's	
	etism, ferromagnetism, magnetic polarization, magnetic domains, magnetic materia	ls,
mag	etic fields, magnetic flux, relationship between electric and magnetic fields	
Elec	ric power distribution: direct and alternating currents, superconductivity, transforme	ers,
indu	tion, magnetic field energy, relationship between changing magnetic fields and elec	tric
field	, Lenz's law, inductors, induced emf, electrical safety, generators, motors	
(Exp	anation is to be done with related experiments)	
	ule 5: Light	10 hours
Refl	ction and refraction, index of refraction, dispersion, and interference in electromag	netic
wav		
Cam	ras: eye and camera, refracting optics, converging lenses, real images, focus, focal l	lengths, f-
	ers, the lens equation, diverging lenses, virtual images, light sensors, vision and vis	
	ction, different types of defects in human eye.	
	and Lasers, optical fibres, metals, insulators, and semiconductors; photoconductors	s: p-n
	on diodes; light-emitting diodes; incoherent and	·, F
	ent light; spontaneous and stimulated emission; population inversion; laser amplific	ation and
	ation; laser safety, optical fibre: structure and light propagation	
	anation is to be done with related experiments)	
	Lecture hours	60 hours
	Book(s)	
1.	Physics in our daily lives, Umme Ammara, gurucool publishing	
2	The Physics of Everyday Things, James KaKalios, RH US(2017)	
3.	Physics in Everyday Life, Shaswant Goswami, Vedang Sati, (2016)	
4.	How Things Work The Physics of Everyday Life, Louis A. Bloomfie publishing(WileyPLUS)	ld, Wiley
Refe	ence Books	
1.	Feynmann Lectures on Physics, Matthew Sands, Richard Feynmann and Rober	t
	B.LeightonVol I, Vol II, Vol III.	
2.	Storm in a Teacup: The Physics of Everyday Life, Helen Czerski, Publisher Blac	rk Swan
	storm in a reacup. The ringsles of Everyday Ene, rielen ezerski, rabiliter Dia	K O wan
D	SCC L T	P C
	inor) Atmospheric Physics $\begin{array}{c c} L & I \\ \hline 4 & 0 \end{array}$	$\begin{array}{c c} 1 & C \\ \hline 0 & 4 \end{array}$
	requisite: Basic Physics	0 4
	se Objectives:	
	To introduce atmospheric aerosols and analyse its impact on the global climate	
4	To introduce students to different methods of atmospheric observation	
	se Outcome:	

After successful completion of the course, the students will be able to

CO1: get acquainted with the different layers of the atmosphere and the related physical phenomenon.

CO 2: know the thermodynamics of the atmosphere.

CO 3: know about atmospheric aerosols and clouds and impact on climate

CO 4: learn principles and applications of remote sensing and meteorological measurements

Module 1: INTRODUCTION TO EARTH'S ATMOSPHERE	14 hours
State of the earth's atmosphere: main constituents of dry air, CO2, ozone, water van	pour, aerosols;
vertical thermal structure of the atmosphere : troposphere, stratosphere, mesosphere,	, thermosphere
and exosphere; environmental lapse rate, hydrostatic equilibrium, hydrostatic equatic	n
Module 2: ATMOSPHERIC THERMODYNAMICS	18 hours
Gas Laws, Ideal Gas Law, Dalton's Law, First Law of Thermodynamics, equivalence	e between heat
and work, thermal capabilities, isothermal, isochoric, isobaric transformation	ion, adiabatic
transformation, Poisson relation, thermodynamic properties of water, latent h	eat, Clausius-
Clapeyron's relation, Approximation and consequences of Clausius-Clapeyron relation	
mean molecular weight of dry and moist air.	
Module 3:AEROSOL AND CLOUD	14 hours
Classification of atmospheric aerosol, production and removal mechanisms, concentr	ation and size
distribution, adsorption and scattering of solar radiation, Rayleigh scattering and Mie	
Beer-Bouguer-Lambert Law	-
Macro and microphysical characteristics of cloud: droplet growth and cloud dissipati	on
mechanism, radiative transfer in cloudy atmosphere, role of aerosol and cloud in clim	nate.
Module 4: ATMOSPHERIC OBSERVATIONS	14 hours
General principles of meteorological measurements and observational procedures	, conventional
and self recording measurements of atmospheric variables, upper air measurements:	pilot balloons,
radiosonde, ozonesonde, GPS sonde.	
Surface based remote sensing: working principle and applications of LIDAR, Se	ONAR, Water
RADAR, radiological satellites, multiscanner radio-meters and their applications in t	he observation
of weather parameters.	
Total Lecture hours	60 hours
Text Book(s)	
1. Physics of the Atmosphere and Climate – Murray L. Salby, Cambridge Univers	ity Press
2. Introduction to Atmospheric Physics – D.G. Andrews, Cambridge University Ph	ress
Reference Books	
1. An Introduction to Dynamic Meteorology- Vol. 1., James R. Holton.	
2. Remote Sensing of Aerosols, Clouds and Precipitation – T. Islam, Y	. Hu, A. A.
Kokhanovsky, J. Wang (Eds.) Elsevier	.,

MI	DC	Physics of the Earth	L 3	T 0	P 0	C 3		
Pre-re	Pre-requisite: Basic Physics							
Cours	Course Objectives:							
1.	1. To provide fundamental knowledge regarding the earth and the universe							
2.	2. To give an in-depth introduction structure of the earth and its components							
3.	3. To introduce dynamical processes related to solid earth, hydrosphere, atmosphere and							
	biosphere							
4.	To make students aware of different factors disturbing the earth's ecosystem							
Course Outcome:								

After successful completion of the course, the students will be able to CO1: gain basic knowledge about planet earth and the atmosphere CO 2: know the structure of different components of the earth. CO 3: learn about dynamical processes related to the earth CO 4: identify different factors which create threats to the stability of our ecosystem. Module 1: THE EARTH AND THE UNIVERSE 12 hours Origin of universe, creation of elements and earth. A holistic understanding of our dynamic planet through Astronomy, Geology, Meteorology and Oceanography. General characteristics and origin of the universe, the Big Bang Theory. Age of the universe and Hubble constant, formation of galaxies, earth's orbit and spin, Asteroids: origin, types and examples, meteorites and asteroids, earth in the solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age. **Module 2: STRUCTURE** 11 hours The Solid Earth: Mass, dimensions, shape and topography, internal structure, magnetic field, geothermal energy The Hydrosphere: The oceans, their extent, depth, volume, chemical composition, river systems The Atmosphere: Layers, variation of temperature with altitude, variation of density and pressure with altitude, cloud formation The Cryosphere: Polar caps and ice sheets, mountain glaciers, permafrost. Module 3: DYNAMICAL PROCESSES 15 hours The Solid Earth: Origin of the magnetic field, source of geothermal energy, convection of the earth's core and production of its magnetic field, mechanical layering of the earth, introduction of geophysical methods of earth investigation, concept of plate tectonics; types of earth movements, Earthquake and earthquake belts, Richter scale, geophones. Hydrosphere: Ocean circulations, oceanic current system and effect of Corioli's force, tides, tsunamis The Atmosphere: Atmospheric circulation, weather and climate changes, earth's temperature and greenhouse effect **Biosphere**: water cycle, carbon cycle Module 4: DISTURBING THE EARTH 7 hours Contemporary dilemmas – (a) human population dynamics (b) Atmosphere: greenhouse gas emissions, climate change, air pollution (c) Hydrosphere: fresh water depletion, water pollution (d) Geosphere: chemical effluents, nuclear waste (e) Bioshpere: biodiversity loss, deforestation. Robustness and fragility of ecosystems. **Total Lecture hours** 45 hours Text Book(s) Physics of the Earth, Frank D. Stacey, Paul M. Davis, 2008, Cambridge University Press 1. 2. Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emiliani, 1992, Cambridge University Press. **Reference Books** The Blue Planet : An Introduction to Earth System Science, Brian J. Skimnner, Stephen C. 1. Portere, 1994, John Wiley & Sons 2 The Solid Earth: An Introduction to Global Geophysics, C. M. R. Fowler, 1990, Cambridge **University Press**

SEMESTER-III

DSCC		L	Т	Р	C
(Major+Minor)	Mathematical Physics I	3	0	2	4
Pre-requisite: Bas	ic Physics and Mathematics				
Course Objectives	:				
1. To provide	the fundamental knowledge of calculus and differential equatio	ns.			
2. To enable s	tudents to learn different properties vectors and their differentia	ation a	and		
integration.					
	idents familiar with orthogonal curvilinear coordinates.				
	e the dirac delta function and its properties.				
Course Outcome:					
After successful co	mpletion of the course, the students will be able to				
CO1: Apply the fur	ndamentals of Calculus to solve simple problems.				
CO 2: Learn the ba	sics of vector differentiation and vector integration and their ap	plicat	ions.		
1 0	lient, divergence and curl in orthogonal curvilinear coordinates.				
	he properties of Dirac Delta function				
Module 1: CALC				5 hou	
	ferentiation, plotting of functions, intuitive ideas of continuous				etc.
	ng of curves. Approximation: Taylor and Binomial series (state				
	cond Order differential equations: First Order differential equation			itegra	ting
	us equations with constant coefficients, Wronskian and general				
	ns of more than one variable: Partial derivatives, exact and in	nexac	t diff	erent	ials.
<u> </u>	with simple examples.				
Module 2: VECTO				8 hou	
	rs, Scalar product and vector product, scalar triple product and	their	inter	preta	tion
	l volume, respectively. Scalar and vector fields.				
	on: Directional derivatives and normal derivative. Gradient of a				
	etation. Divergence and curl of a vector field. Del and Laplacia	an op	erato	rs, ve	ctor
identities.		•	с · с.	•, •	. 1
	Ordinary integrals of vectors. Multiple integrals, Jacobian, not				
	volume elements. Line, surface and volume integrals of vector's pivergeness. Theorem Green's and Stelles Theorems and the				
	' Divergence Theorem, Green's and Stokes Theorems and the	eir ap	plica	lions	(no
rigorous proofs)	OGONAL CURVILINEAR COORDINATES			7 hou	-
	ear coordinates. Derivation of gradient, divergence, curl and La	nloa		7 hou	rs
	and cylindrical coordinate systems.	apraci		L	
*	DELTA FUNCTION AND ITS PROPERTIES		4	5 hou	rc
	delta function. Representation as a limit of a Gaussian function	ion a			
	s of Dirac delta function.	ion a	liu ie	ctang	ulai
Total Lecture hou				45 ho	1116
(Mathematical Ph				<u>+3 no</u> 30 ho	
	ysics Laboratory)			50 HU	
				75 ho	1115
Total hours (Lectu	ire +Lab)			75 ho ′45T+	
Total hours (Lectu Text Book(s)	ıre +Lab)			75 ho (45T+	
Text Book(s)1.Mathematical	Ire +Lab) Methods for Physicists, G.B. Arkfen, H.J. Weber, F.E, Harris	s, 201	((45T+	30P)
Text Book(s)1.Mathematical Elsevier	Methods for Physicists, G.B. Arkfen, H.J. Weber, F.E, Harris		13, 7 ¹	(45T+	30P)
Text Book(s)1.Mathematical Elsevier2.An Introduction			13, 7 ¹	(45T+	30P)
Text Book(s)1.Mathematical Elsevier2.An IntroductionReference Books	Methods for Physicists, G.B. Arkfen, H.J. Weber, F.E, Harrison to Ordinary Differential Equations, E.A. Coddington, 2009, 1		13, 7 ¹	(45T+	30P)
Text Book(s)1.Mathematical Elsevier2.An IntroductionReference Books1.Mathematical	Methods for Physicists, G.B. Arkfen, H.J. Weber, F.E, Harris	PHIO	(13, 7 ¹ Lear	(45T+	30P)

Practical

Prerequisite : Basic Computer Skills

Course Objective :

- 1) Makes students gain a broad perspective about the uses of computers in engineering industry. .
- 2) Develops basic understanding of computers, the concept of algorithm and algorithmic thinking.
- 3) An ability to incorporate exception handling in object-oriented programs.
- 4) Develops the use of the C programming language to implement various algorithms, and develops the basic concepts and terminology of programming in general

Course Outcome:

- CO1: Get the basic knowledge in fundamentals of programming, algorithms and programming technologies and fundamentals of Computer Science.
- CO2: The course will help to give a basic idea how to Control the sequence of the program and give logical outputs
- CO3: Construct programs involving decision structures and loops
- CO4: Get concept of Strings for writing programs related to character array.

List of Experiments :

- 1) Development of programs using multiple arithmetic and logical operators. Programs for addition, subtraction, multiplication etc.
- 2) Programs using simple control statements such as if else, while, do while etc. Making a program for a calculator for example. Extracting the digits of an integer, reversing digits, finding sum of digits etc.
- 3) Programs using For loop, switch statement etc. eg. Finding average of numbers, multiplication of numbers etc. Checking for primes, generation of Armstrong numbers.
- 4) Generation of the Fibonacci sequence, finding the square root of a number, calculation of factorials, printing various patterns using for loop.
- 5) Programs using Arrays: declaring and initializing arrays. Program to do simple operations with arrays. Strings inputting and outputting strings. Using string functions such as strcat, strlen etc. Writing simple programs for strings without using string functions.

Total Lab Hours :

30 Hours

 Text Books :

 1) PROGRAMMING IN ANSI C BY E. BALGURUSWAMY, TATA MC-GRAW HILL

2) PROGRAMMING WITH C, SCHAUM SERIES

DSCC	Sports Science	L	T	P	C
(minor)		4	0	0	4
	: Preliminary concept of Science and Mathematics				
Course Obje		rator	1 tha	field	of
	e the fundamental knowledge of dynamics which is helpful to unde ooting, discuss throw etc.	Istan	i the	neia	OI
*	op the basic idea on gravitation to understand climbing, scating, swi	mmir	na at	•	
			ig cu		
(3)To have an outlook on food and nutrition of our body.(4)To enhance the basics of kinesiology, biomechanics and sports.					
	re of mental and physical health for a positive lifestyle.				
Course Outc					
	sful completion of the course, the students will be able				
	-	a hak	ind	nort	G
	erstand the basics of dynamics required for understanding physic	s ben	inia	spon	8
	In the conservation laws to relate with practical field of sports. derstand the importance of food and nutrition for good health.				
	lerstand kinesiology, biomechanics and sports.				
CO 5: to lead	n about physical fitness and positive lifestyle.				
Module 1: D	vnamics			15 ho	urs
	nt : Physical quantities, Standards and Units, International system of	Unit			uis
	time, length and mass, Precision and significant figures	Unit	5,		
	vs of motion: Newton's first law. Force, mass. Newton's second law	17			
	d law, Mass and weight. Applications of Newton's laws.	· •			
	otion: Shooting a falling target, Physics behind Shooting, Javelin th	nrow			
and Discus th					
Module 2: G				10 h	ours
	n laws : Conservation of linear momentum, collisions – elastic and				
	gular momentum. (Physics behind Carom, Billiards, Racing)				
	ass: Physics behind Cycling, Rock climbing, Skating				
	Origin, Newton's law of gravitation, Archimedes's principle, Buoy	ancv			
	hind swimming	unoj			
Module 3: H				10 h	ours
	itrition: Proteins, Vitamins, Fat, Blood pressure. Problems due to t	he de	ficie		
vitamins.	······································			5	
Energy: Diff	Ferent forms of Energy, Conservation of mass-energy				
	rcises: Walking, Jogging and Running, Weight management				
	inesiology, Biomechanics & Sports			15 ho	urs
	mportance of Kinesiology & Biomechanics in Physical Education &	k Spc	rts,		
	w of Motion & its application in sports, example of Friction and its			Spor	ts,
examples, Ef	fect of exercise on the functioning of Various Body Systems. (Circu	ulator	y Sy	stem,	,
Respiratory S	ystem, Neuro-Muscular System etc)				
Module 5:	Physical Fitness, Wellness & Lifestyle			10 ho	urs
Components	of Physical fitness, Components of Health related fitness, Components	nents	of w	ellne	SS
-	ealth Threats through Lifestyle Change, Concept of Positive Lifest ntal and physical benefits of yoga.	yle, I	ntroc	luctio	on
.5 I 05u, IIIC	and physical concille of Joga.				
Total Lectur	e hours			60 h	ours
Text Book(s)					
	Perelman. Physics for Entertainment. Createspace Independent Pub,	2010).		
	Perelman. Physics Everywhere. Prodinnova Publishers, 2014.				
3. Vassilio	s McInnes Spathopoulos. An Introduction to the Physics of Sports.	Creat	tespa	ce	

4.	Independent Publishing Platform, 2013. Swaminathan M. Handbook of Food and Nutrition. Bangalore Press. 2012.					
Ref	Reference Books					
1.	Walter Lewin.					
2.	For the Love of Physics. Taxmann Publications Pvt. Ltd., 2012.					
	Srilakshmi B. Food Science. New Age International Pub. 2015.					

MDC	Indian Contribution to Science	L 3	Т 0	P 0	C 3	
Pre-requisite:	Preliminary concept of Science and Mathematics.	5	U	U	5	
Course Object						
U	the knowledge of Indian science from ancient to modern					
	interest on ancient discoveries.					
	3. To identify ancient rituals and relations with modern methods.					
4. To gather knowledge about the Nobel Lauretes of Indian origin.						
-	5. To enhance the knowledge of the lives of Indian scientists.					
Course Outco						
After success	ful completion of the course, the students will be able					
CO1: to learn	the development of science from ancient to modern India.					
	n different fields of science originated in ancient India					
	rn the traditional Indian customs and rituals, its relation to science	e. its	effe	ct.		
	w about Nobel Laureates of Indian origin.	, 100	• • • • •	•••		
	w about the life of few scientists of India.					
Module 1: Inc	dia's Contribution to Science and Technology (from Ancient to M	oderr	1)	10 ho	urs	
Proindepende	nce: Water management, Iron and Steel, Farming Techniques and					
Fertilisers, Ph	ysics, Medicine and Surgery, Post Independence: Atomic Energy,	Spac	e,			
Electronics ar	d Information Technology, Oceanography, Biotechnology, Council	il of				
Scientific and	Industrial Research, The beginning of Indian Astronomy, Chemist	ry in				
Early Literatu	re, Medicinal Tradition in Ancient India					
Module 2: Sc	ience in Ancient India		8	8 hou	irs	
Different stud	dies on plants and animals, Biodiversity and folk traditions, Mather	natic	s			
in India by ea	n India by early Indian astronomers, early historical period, classical period,					
Metallurgy in	India					
	dian Traditional Knowledge			7 ho	ours	
About nature, flora and fauna, Sacred groves, wildlife, Bishnois and conservation, Ayurveda,						
elements of nature, ways of treatment, medical instruments in ancient India, yoga, traditional						
-	relation to science, customs and beliefs in different parts of India,	posit	ive a	nd		
negative side,				_		
	bel Laureates of Indian Origin			8 hou	irs	
	oss, Sir C.V Raman, Subrahmanyan Chandrasekhar, Har Govind K	hora	na,			
Venkataraman Ramakrisnan, their contributions.						
	lives of few Scientists and their contributions			12 ho		
	askara II, Aryabhatta, Jagadish Chandra Bose, Acharya Prafulla Cl			•	rbal	
	ahalanobis, Meghnad Saha, Satyendra Nath Bose, Srinivas Ramanu					
Ali, Panchanan Maheshwari, B.P Pal, Homi Jehangir Bhaba, Kalpana Chawla, Sunita Williams,						
Smt Anna Mani, E.K Janaki Ammal						
Total Lecture	e hours		4	45 ho	urs	

Tex	Text Book(s)					
1.	A Short History of Science and Technology In India, Dr Sanjay Sen, Mahabeer Publications,					
	2019					
2.	Doctors, Scientists, & Engineers of Ancient India, S, Narain, Kalpaz Publications, 2017					
3.	From the Beginning of Time: Modern Science and the Puranic Universe, Ganesh Swaminathan, 2020					
Ref	Reference Books					
1.	India's Glorius Scientific Tradition, Suresh Soni, Prabhat Prakashan, 2020					
2.	The Unknown, Chiranit Majumdar, Notion Press Media Pvt Ltd, 2022					
3.	Lilavati's Daughters: The Women Scientists of India, Edited by Rohini Godbole and Ram					
	Ramaswamy, Published by Indian Academy of Sciences, ISBN 978-81-8465-005-1					