

Hathkhowapara, Azara, Guwahati 781017, Assam

<u>School of Engineering & Technology</u> <u>Department of Computer Science and Engineering</u> M.Sc. –Computer Science

With Specialisation in Artificial Intelligence

Semester I, II , III & IV AY 2023-2025

Semester I

Theory/ Practical	Sl. No	Course Type	Course Code	Course Name	Hour	s per v	week	Credit	Ν	lark
Tacucai	140		Coue		L	Т	Р	С	CA	FA
Т	1.	DSCC		Computational Techniques using Python	3	0	0	3	40	60
Т	2.	DSCC		Advanced Data Structures & Algorithms	3	0	0	3	40	60
Т	3.	OEC		Artificial Intelligence	3	1	0	4	40	60
Т	4.	DSCC		Mathematical and Statistical Foundations	3	0	0	3	40	60
Т	5.	AEC		Personality and Soft Skill development	3	0	0	3	50	50
Р	6.	DSCC		Advanced Data Structures & Algorithms LAB	0	0	4	2	50	50
Р	7	DSCC		Web Technology Lab	0	0	4	2	50	50
				Total	15	1	8	20	310	390

Semester II

Theory/	Sl.	Course Type	Course	Course Name	Hour	s per v	week	Credit	I	Mark
Practical	No		Code		L	Т	Р	С	CA	FA
Т	1.	DSCC		Computer Organization and architecture	3	0	0	3	40	60
Р	2.	DSCC		Advanced Database management system	3	0	0	3	40	60
Т	3.	DSCC		Software Engineering	3	0	0	3	40	60
Т	4.	OEC		Image Processing/ Speech & Natural Language Processing	3	1	0	4	40	60
Т	5.	DSCC		Machine Learning	3	0	0	3	40	60
Р	6.	DSCC		Machine Learning Lab	0	0	4	2	50	50
T/P	7.	DSCC		Advanced DBMS Lab (SQL/ NoSQL)	0	0	4	2	50	50
				Total	15	1	8	20	300	400

Semester III

Hathkhowapara,Azara,Guwahati781017,Assam

Theory/ Practical	Sl. No	Course Type	Course Code	Course Name	Hour	s per	week	Credit	l	Mark
Tacucai	110		Coue		L	Т	Р	C	CA	FA
Т	1.	DSCC		Deep Learning	3	0	0	3	40	60
Р	2.	DSCC		Operating Systems	3	0	0	3	40	60
Т	3.	DSCC		Big Data Analytics / Data Science	3	1	0	4	40	60
Т	4.	OEC		Advanced Web Technology	3	0	0	3	40	60
Т	5.	DSCC		Deep learning Lab	0	0	4	2	50	50
Р	6.	AEC		Minor Project	0	0	8	4	50	50
T/P	7.	SEC		Seminar paper	0	0	2	1	00	100
			1	Total	12	1	14	20	260	440

Semester IV

Theory/	SI.	Course Type	Course	Course Name	Hour	s per v	week	Credit	I	Mark
Practical	No		Code		L	Т	Р	С	CA	FA
Т	1.	VAC		Universal Human Values	2	1	0	3	00	100
Р	2.	IC		Elective-IV (As per Table)(As per SWAYAM)	3	0	0	3	00	100
Т	3.	DSCC		Elective-V (As per Table)(As per SWAYAM)	3	0	0	3	00	100
Т	4.	AEC=7 SEC =7		System Development Project	-	-	22	11	200	200
				Total	8	1	22	20	200	500

OPEN ELECTIVE COURSES (SPECIALIZATION)

(MOOCS: SWAYAM COURSES)

CODE	Elective-I	CODE	Elective-II
	Quantum Computing		Internet of Things
	Molecular Computing		Computer network and Internet security
	Nano Technology		Wireless Networks
	Robotics		Android Mobile Application Dev
	Remote Sensing & GIS		Database and content organization

(or any other Course added time to time)

Hathkhowapara, Azara, Guwahati 781017, Assam

Abbreviations Used:

DSCC : Discipline Specific Core Courses

AEC : Ability Enhancement Compulsory Course

VAC : Value Addition Courses

OEC : Open Elective Courses

SEC : Skill Enhancement Courses

- CE : Continuous Evaluation
- ESE : End Semester Examination

L/T/P: Lecture / Tutorial / Practical

School of Engineering & Technology Department of Computer Science and Engineering M.Sc. – Computer Science (With Specialisation in Artificial Intelligence)

Hathkhowapara,Azara,Guwahati781017,Assam

SEMESTER - I

		L	Т	Р	С
DSCC	Computational Techniques using Python	3	0	0	3
Prerequisite:	Basic knowledge of Programming				
Course Objec					
Students will b					
	tudents are introduced to use Python as a tool to solve problems. The vel programming language without actually going through the logic b				
	oded. A minimal understanding of the basic mathematics is assumed.				.0115
	equips them to code a large number of real life problems and learn he				ults
and plots using	, the software.				
Course Outco	me:				
	successful completion of the course, students will be able to				
1. Evalu	ate the python in built functions.				
	ate the various feature engineering algorithms by python progra	mmiı	ıg.		
	n and apply various algorithms to solve real time complex problem		-01		
Module1: Int	roduction to Python Programming		:	8 Hoi	ırs
History of Py	thon Programming Language, thrust areas of Python in real-lif	è pro	blen	n solv	ving
applications,					
Fundamental	programming with Python: Designing a Program, identifiers, ke	ywor	ds, o	perat	ors,
and expressio	ns. Arithmetic, Logical and Assignment operators, Precedence,	Data	ı typ	es: B	asic
data types: St	rings and numbers, displaying an output, type conversion, basic	string	ope	ratio	ns&
methods, form	nat specifiers				
-	ples, Lists & Dictionaries			10 He	
-	utable sequences, creating tuple, basic tuple operations. Lists: n			-	
-	rations, List methods Dictionaries: basic dictionary operations,	dictio	onary	v met	hod
User input va	riable.				
	ntrol structures			12Ho	urs
	ructures: If, If —-else, ifelifelse, nested if decision flow				
Repetition S	Structures: condition controlled: while loop. Count controlled:	for lo	op, s	sentir	ials,
continue and	break statements, try and except statements.				
	actions & Files			10 He	
	ion, modules, void function, flow charting, hierarchy charts, L				
	g an argument function, value returning functions, Random num	iber g	genei	atior	1
Files: introdu	action to file input and output.				
	entific computing packages	<u></u>		5 Hou	
	ay object, creating array, matrix, indexing, slicing, resizing, res				
-	nctions, matrices and vector operations Matplotlib: basic plottir	ng, So	npy:	Line	ar
	tions, equation solving.				
Total hours				45 ho	urs

Hathkhowapara, Azara, Guwahati 781017, Assam

_	
Tex	t Book
1.	Mark Lutz, "Learning Python" O'Reilly Media, 2013.
De	
Ref	erence Books
1.	Robert Johansson, "Numerical Python: Scientific Computing and Data Science
2	.Applications with Numpy, SciPy and Matplotlib" Apress, 2019.
	Rubin H. Landu, Manuel J. Paez, and Cristian C.Bordeianu, "Computational Physics
	Problem solving with Python" – Third Edition, Wiley VCH, 2015.
L	

DSCC	Advanced Data Structures & Algorithms	L	Т	Р	C
DSCC	Auvanceu Data Structures & Algorithmis	3	0	0	3
Prerequisite:	Knowledge of Data Structure		<u> </u>	<u> </u>	
Course Obje	ctives:				
Student	s will be able to-				
1. To impart k	mowledge on advanced data structure and algorithms to analyze comp	lexity	of al	gorith	ıms
2. The fundan	nental design, analysis, and implementation of basic data structures.				
3. Significan	ce of algorithms in the computer field.				
5. Various as	spects of algorithm development.				
Course Outco	ome:				
At the e	nd of successful completion of the course, students will be able	e to-			
1. Basic class.	ability to analyze algorithms and to determine algorithm correctness	and t	ime e	efficie	ency
	ter a variety of advanced abstract data type (ADT) and data mentations.	structu	ires	and t	hei
•	ter different algorithm design techniques (brute-force, divide and cond	juer, g	greedy	y, etc	
4. Abilit proble	y to apply and implement learned algorithm design techniques and da ems.	ta stru	cture	s to s	olve
Module: 1 In	troduction		1	8 hou	irs
Algorithms, P	erformance analysis- time complexity and space complexity, Asymptot	tic No	otation	n-Big	Oh
•	heta notations, Complexity Analysis Examples. Data structures-Linea				data
	OT concept, Linear List ADT, Array representation, Linked representation, singly linked lists, insertion, delation, search operations, doubly link				

representation, singly linked lists -insertion, deletion, search operations, doubly linked lists-insertion, deletion operations, circular lists. Representation of single, two dimensional arrays, Sparse matrices and their representation.

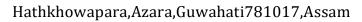
Hathkhowapara, Azara, Guwahati 781017, Assam

9.A	Hatiikiiowapaia,Azara,Guwaiiati/6101/,Assaiii	
Mo	dule:2 Hashing	7 hours
Prol	hing – General Idea, Hash Function, Separate Chaining, Hash Tables without linked libing, Quadratic Probing, Double Hashing, Rehashing, Hash Tables in the Standard Library hing, Extendible Hashing.	
Mo	dule:3 Priority Queues (Heaps)	6 hours
Ope Stru	odel, Simple implementations, Binary Heap: Structure Property, Heap Order Property, I rations: insert, delete, Percolate down, Other Heap Operations. Binomial Queues: Binor cture, Binomial Queue Operations, Implementation of Binomial Queue, Priority Que adard Library	nial Queue
Mo	dule:4 Trees	6 hours
Sea	es – AVL: Single Rotation, Double Rotation, B-Trees. Multi-way Search Trees – rching for an Element in a 2-3 Tree, Inserting a New Element in a 2-3 Tree, Deleting an Ele 3 Tree. Red-Black Trees – Properties of red-black trees, Rotations, Insertion, Deletion	
Mo	dule:5 Graphs Algorithms	7 hours
	nentary Graph Algorithms: Topological sort, Single Source Shortest Path Algorithms: man-Ford, All-Pairs Shortest Paths: Floyd-Warshall's Algorithm.	Dijkstra's,
Mo	dule: 6 Disjoint Sets and String Matching	7 hours
Uni Stri	oint Sets – Equivalence relation, Basic Data Structure, Simple Union and Find algorith on and Path compression algorithm. ng Matching – The naive string-matching algorithm, The Rabin-Karp algor th-Morris-Pratt algorithm.	
Mo	dule: 7 Basic algorithmic techniques	7 hours
algo	edy algorithms, divide & conquer, dynamic programming. Search techniques - backtracki rithms with analysis, integer sorting, selection sort. Graph algorithms: DFS and lications, MST and shortest paths.	0 0
Tot	al Lecture hours	48 hours
Tex	tbook	
1.	Advanced Data Structures, Reema Thareja, S. Rama Sree, Oxford University Press, 201	8
2.	Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, 4th Edition, 2014,	Pearson.
3.	Introduction to Algorithms, Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest	, Clifford
	Stein, 3rd Edition, 2009, The MIT Press.	
Ref	erence Books	
1.	Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahani and Rajasekharan	n, 2nd
_		

Hathkhowapara, Azara, Guwahati 781017, Assam

	Edition, 2009, University Press Pvt. Ltd.
2.	S. Sahni, Data Structures, Algorithms, and Applications in C++, Silicon Press, 2/e, 2005.
	2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
	MIT Press, 3/e, 2009.
3.	A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data Structures Using C and C++,
	Prentice Hall, 2/e, 1995.

OEC	Antificial Intelligence	L	Т	Р	С
	Artificial Intelligence	3	1	0	4
Prerequisite	Programming skills, Discrete mathematics, Probability Theory				
Course Obje	ectives:				
Students will					
1. To b	become familiar with basic principles of AI toward problem so	lving	g, ir	Iferei	nce,
	eption, knowledge representation, and learning.				
-	earn the methods of solving problems using Artificial Intelligence	e			
3. To le	earn the knowledge representation techniques, reasoning techniq	ues a	ind	planr	ning
	ntroduce the concepts of Expert Systems and machine learning.		1	L	U
Course Outc	come:				
At the end of	successful completion of the course, students will be able to				
	-				
1. Demo	onstrate fundamental understanding of artificial intelligence (AI)	and	exn	ert	
syster		unu	enp	010	
	basic principles of AI in solutions that require problem solving	. rea	soni	ng.	
	ing, knowledge representation and uncertainty.	,		0,	
	onstrate proficiency in applying inductive learning.				
	nunicate effectively about AI problems, algorithms, implementa	tions	. an	d the	ir
	imental evaluation.		, an		~ II
enper					
Module:1 In	troduction		9 F	Iour	s
	lving- Formulating problems, problem types, states and	opei			
	of AI in: Natural Language Processing, vision and speech pr				
	ptics, games, theorem proving.		51112	, •	pere
<i>byscmb,rocc</i>	ales, games, theorem proving.				
Module:2 Se	arch strategies		10	Hou	rs
	ring methods: search strategies, uninformed search and inform	ed s			
	breadth first search, Heuristic search: hill climbing, best first sea				
	search: simulated annealing, genetic algorithm, ant colony opti				
	, IDA, divide and conquer approaches, beam stack search, pr				
	D*, Rule based systems, game playing: minimax algorithm, alph				
				00110	,


SSS*

Hathkhowapara,Azara,Guwahati781017,Assam

Mo		
	dule:3 Reasoning	10Hours
Kno	owledge representation: First order predicate knowledge, unification, m	odus pones,
reso	olutions, dependency directed backtracking, Rule based systems: forwar	d reasoning,
con	flict resolution, backward reasoning, structured knowledge representation: se	emantic nets,
slot	s, exception, default frames, conceptual dependency, scripts.	
		1
	dule:4 Planning and uncertainty	11 Hours
	ic representation of plans, partial order planning, planning in the blocks world	
-	nning, conditional planning, probabilistic reasoning, non-monotonic reasoning	
	ic probability, Bayes rule, Belief networks, Default reasoning, Fuzzy sets and	
Dec	cision making- Utility theory, utility functions, Decision theoretic expert sy	stems, neural
net	8	
	dule:5 Inductive learning	10 Hours
Dec	cision trees, rule based learning, currentbest-hypothesis search, least-committee	ment search
neu	ral networks, reinforcement learning, genetic algorithms; Other learning meth	hods - neural
net	works, reinforcement learning, genetic algorithms.	
Mo	dule:6 Planning and constraint satisfaction	10 Hours
Do	mains forward and healtward search applicate algoning alon space algoning	It mould
0.010	mains, forward and backward search, goal stack planning, plan space planning	
con	istraint propagation	
	straint propagation	g, graph plan,
Tot	tal Lecture hours	
Tot	straint propagation tal Lecture hours tt Book	, graph plan, 60 hours
Tot	tal Lecture hours	, graph plan, 60 hours
Tot Tey	straint propagation tal Lecture hours tal Lecture hours tal Lecture hours Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App	, graph plan, 60 hours
Tot Tey	straint propagation tal Lecture hours tt Book	, graph plan, 60 hours
Tot Te 1.	tal Lecture hours tal Lecture hours tal Lecture hours Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press	g, graph plan, 60 hours roach,
Tot Tey	straint propagation tal Lecture hours tal Lecture hours tal Lecture hours Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App	, graph plan 60 hours roach,
Tot Te 1. 2.	straint propagation tal Lecture hours st Book Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill	, graph plan 60 hours roach,
Tot Tey 1. 2. Ref	straint propagation tal Lecture hours st Book Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill ference Books	g, graph plan, 60 hours roach,
Tot Te 1. 2.	straint propagation tal Lecture hours st Book Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill	g, graph plan, 60 hours roach,
Tot Tey 1. 2. Ref 1.	straint propagation tal Lecture hours tal Lecture hours tal Lecture hours tal Lecture hours stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill Ference Books George F. Luger, Artificial Intelligence, Pearson Education	g, graph plan, 60 hours roach,
Tot Tey 1. 2. Ref	straint propagation tal Lecture hours st Book Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill ference Books	, graph plan
Tot Tey 1. 2. Ref 1.	straint propagation tal Lecture hours tal Lecture hours tal Lecture hours tal Lecture hours stuart Russell and Peter Norvig. Artificial Intelligence – A Modern App Pearson Education Press Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill Ference Books George F. Luger, Artificial Intelligence, Pearson Education	g, graph plan 60 hours roach,

DSCC	Mathematical and Statistical Foundations	L	T	Р	C				
		3	0	0	3				
Prerequisite:	Prerequisite: Basic Statistics								
Course Objec	tives:								

- 1. The Number Theory basic concepts useful for cryptography etc.
- 2. The theory of Probability, and probability distributions of single and multiple random variables.
- 3. The sampling theory and testing of hypothesis and making inferences.
- 4. Stochastic process and Markov chains.

Course Outcome:

Upon completion of this course, the student will be able to

1. Apply the number theory concepts to cryptography domain.

- 2. Apply the concepts of probability and distributions to some case studies.
- 3. Correlate the material of one unit to the material in other units.

4. Resolve the potential misconceptions and hazards in each topic of study.

Module: 1			

9 hours

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclideanalgorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers.

Congruences: Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences.

Module: 2

10 hours

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple LinearRegression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction, Simple Linear Regression Case Study.

Random Variables and Probability Distributions: Concept of a Random Variable, DiscreteProbability Distributions, Continuous Probability Distributions, Statistical Independence.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

Module: 3

10 hours

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial.

Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, SamplingDistribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t–Distribution, F-Distribution.

Module: 4

9 hours

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, ToleranceLimits, Estimating the Variance, Estimating a Proportion for single mean, Difference between TwoMeans,

Hathkhowapara,Azara,Guwahati781017,Assam

	Dorsonality and Soft Skill development	L	Т	Р	С
AEC	Personality and Soft Skill development	3	0	0	3

Mo	odule: 5	8 hours
Sto	chastic Processes and Markov Chains: Introduction to Stochastic proces	ses- Markov
•	cess.Transition Probability, Transition Probability Matrix, First order and Higher	
pro	cess,n-step transition probabilities, Markov chain, Steady state condition, Markov anal	ysis.
То	tal hours	46 hours
Te	xt Book	
1.	Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Ad ISBN 978 0-321-50031-1	ldisonWesley
1. 2.		
2.	ISBN 978 0-321-50031-1 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability &	
2.	ISBN 978 0-321-50031-1 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Engineers & Scientists, 9th Ed. Pearson Publishers.	& Statisticsfo

Hathkhowapara, Azara, Guwahati 781017, Assam

Course Outcomes:

Upon completion of this course, the student will be able to

CO1:Understand the importance ofSoftskills and how to useinourlives

CO2:PerformSWOTanalysis-learningtomaximizesuccess using apersonal SWOT

CO3:DetermineCommunicationstyles-typeswithexamples,perceptionofeachtypeof communication, quiz CO4:Focusonvariouscommunicationskills/listening/stressmanagementetc.

CO5:Train for Etiquette-socialandcorporate-Types, Presentationskills, Interviewtechniques etc.

TeachingMethodology:

Presentations, Group discussions, Brainstorming, Case Studies, Motivational Videos, Quizzes, and other Group Activities

Unit		Contentsof the syllabus	Number of Hours
1		Whataresoftskills	2
-		Theimportanceofsoft skillsinour lives	-
2		WhatisPersonality?	2
-		Personalitytraitsandtipstodevelopa goodPersonality	
		Self-presentation-	
3	•	WhatisSelf-presentation,	2
	= <u>\$</u>	Strategiesofself-presentation	
	•	SWOTanalysis	
4	•]	Learningto maximize successusingSWOT	4
	•]	Howto do a personal SWOT	
_		Self-analysis	
5	= 5	Significanceandmethodsofself-analysis	2
6		Communicationskills	
	•]	Process, elements, and importance	2
		Waystoimprovecommunication	_
-		Communicationstyleswithexamples	2
7	•]	Perceptionofeachtypeofcommunication	2
	•	Assertiveness	
8		Whatisassertiveness	2
0	•]	Importanceintoday's world	
		Non-verbalcommunication andit'stypes	
9		Importance and role of nonverbal communication	2
		Waystoimproveournonverbalcommunication	
		AcingTimemanagement Whatistimemanagement	
10		Benefitsoftimemanagement	2
		Strategiestoimprovetimemanagement	
		Goalsetting	
11		Importance of Goalsetting	
11		TypesofGoals,	2
		Waystoachievegoals	
		Changemanagement and changecurve	
12		Impactofchange	2
	•]	Learningtomanagechangein ourlives	

Hathkhowapara, Azara, Guwahati 781017, Assam

			-
	•	StressManagement	
13	-	Whatisstress andit'scauses	2
	-	Techniquesofstressmanagement	
	-	Listeningskills	_
14	-	Importanceandtypes	2
	•	Waystoimprovelisteningskills	
	-	Team/groupdynamicsandgroupdiscussion	
15	-	Importance of groupwork	2
	•	Effectivecommunication withinateam	
16	-	Presentationskills	2
	•	Tipstomakeeffectiveandengagingpresentations	
	-	Etiquette	
17	-	Socialandcorporate-Types	2
	•	Importance and impact of business and social etique tte	
	-	Interviewtechniques	
18	-	MockInterviews-Dosanddon'ts,FAQ's	2
	•	Tipson makingapositiveimpression	
19	-	Variousactivities with a practical approach based on every daylife situations	7
		TotalNumberofHours	45
SuggestedR	lefer	renceBooks	
1. Soft	skill	s&Lifeskills:Thedynamicsof success-NishiteshandDr.BhaskaraReddy	
2. Soft	Skill	ls-Dr.Alex	
3. Man	agin	gSoftskills-K.R LakshminarayanandT.Murugavel	
4. Soft	skill	sandProfessionalCommunication-FrancisPeterS.J	
5. The	Acec	ofSoft skills-GopalswamyRamesh andMahadevan Ramesh	
6. Pers	onal	ityDevelopmentandSoftskills-BarunK.Mitra	
		er: Anintroduction toCore&Corporatesoftskills-Anitha Arunima	
0			

8. HowtotalktoAnyone,Anytime,Anywhere-LarryKing

DSCC	Advanced Data Structures & Algorithms Lab	L T 0 0	Т	Р	С			
			0	4	2			
Prerequisite	Prerequisite: Knowledge of Data Structure							

Hathkhowapara, Azara, Guwahati 781017, Assam

Course Objectives:

Students will be able to-

- 1. The fundamental design, analysis, and implementation of basic data structures.
- 2. Basic concepts in the specification and analysis of programs.
- 3. Principles for good program design, especially the uses of data abstraction.
- 4. To understand the sorting techniques
- 5. To understand the non linear data structures 6. to learn bout the pattern matching

Course Outcome:

At the end of successful completion of the course , students will be able to-

- 1. Basic ability to analyze algorithms and to determine algorithm correctness and time Efficiency class.
- 2. Master a variety of advanced abstract data type (ADT) and data structures and their Implementations.
- 3. Master different algorithm design techniques (brute-force, divide and conquer, greedy, etc.)
- 4. Ability to apply and implement learned algorithm design techniques and data structures to solve problems

Practical Experiments:

1. Write Java/C/C++ programs that use both recursive and non-recursive functions for

implementing the following searching methods:

a) Linear search b) Binary search

- 2. Write Java/C/C++ programs to implement the following using arrays and linked lists
- a) List ADT

3. Write Java/C/C++ programs to implement the following using an array.

a) Stack ADT b) Queue ADT

4. Write a Java/C/C++ program that reads an infix expression and converts the expression to

Hathkhowapara, Azara, Guwahati 781017, Assam

postfixform. (Use stack ADT).

5. Write a Java/C/C++ program to implement circular queue ADT using an array.

6. Write a Java/C/C++ program that uses both a stack and a queue to test whether the given string is a palindrome or not.

7. Write Java/C/C++ programs to implement the following using a singly linked list.

a) Stack ADT

b) Queue ADT

8. Write Java/C/C++ programs to implement the deque (double ended queue) ADT using

a) Array b) Singly linked list c) Doubly linked list.

9. Write a Java/C/C++ program to implement priority queue ADT.

10. Write a Java/C/C++ program to perform the following operations:

a) Construct a binary search tree of elements.

b) Search for a key element in the above binary search tree

c) Delete an element from the above binary search tree.

11. Write a Java/C/C++ program to implement all the functions of a dictionary (ADT) using Hashing.

12. Write a Java/C/C++ program to implement Dijkstra's algorithm for Single source shortest path problem.

13. Write Java/C/C++ programs that use recursive and non-recursive functions to traverse the given binary tree in

a) Preorder b) Inorder c) Postorder.

14. Write Java/C/C++ programs for the implementation of bfs and dfs for a given graph.

15. Write Java/C/C++ programs for implementing the following sorting methods:

a) Bubble sort d) Merge sort g) Binary tree sort

Hathkhowapara, Azara, Guwahati 781017, Assam

b) Insertion sort e) Heap sort

c) Quick sort f) Radix sort

16. Write a Java/C/C++ program to perform the following operations:

a) Insertion into a B-tree b) Searching in a B-tree

17. Write a Java/C/C++ program that implements Kruskal's algorithm to generate minimum costspanning tree.

18. Write a Java/C/C++ program that implements KMP algorithm for pattern matching.

DSCC		Web Technology Lab	T P C 0 4 2
Prerequ	isite: Ba	sic knowledge of Web Programming	
Course	Objectiv	7es:	
that the l	earners o	the course is to train the learners about the tools and techniques of web technolo can develop we application for a particular system independently not only theore ly using several we technology tools.	
CO 2: To interchar CO 3: Bu CO 4: To	nalyze a acquire nge uild dyna design	es web page and identify its elements and attributes. e knowledge of XML fundamentals and usage of xml technology in electronic da amic web pages using JavaScript (client side programming). and develop web based enterprise systems using technologies like jsp, servlet. applications using PHP	ita
Module	Topic	Course Content	Hours
Ι		College Placement Information System Write a PHP/Java/.NET program to connect to a database and retrieve data from a table and show the details in a neat format.	
II		Write a stored procedure in MYSQL and using PHP/Java/.NET code insert or add data into MYSQL table.	
III		A simple calculator web application that takes two numbers and an operator (+, ,/,*and %) from an HTML page and returns the result page with the operation performed on the operands	
IV		Create an application using HTML, JSP and MySQL Database. HTML file will take data from user which will be inserted, Displayed and stored in database by JSP.	

Hathkhowapara, Azara, Guwahati 781017, Assam

-		
V	Write PHP program	
	a) To send mail.	
	b) To convert a string, lower to upper case and u	pper case to lower case or
	capital case.	
	c) To change image automatically using switch of	
	d) To calculate current age without using any pre-	
	e) To upload image to the server using html and	PHP.
	Write a code in PHP/Java/.NET to call MYSQL store	d procedure with
	parameters.	
	Write a code in PHP/Java/.NET to execute MYSQL t	rigger
	a) before insert of values to the table	
	b) delete and edit of a record	
	Demo project (Choose any one): Optional	
	a) Student Management System.	
	b) Library Management System	
	c) Hospital Management System	
	d) Online Book Store Project in PHP	
	e) Hostel Management	
	f) Online Examination System	
	g) Job portal system	
	h) Event Management System	
	i) Online Pharmacy System	
TEXT/R	EFERENCES BOOK:	
1.	Web Technologies 2nd Edition, Achyut S Godbole & Atul H	Kahate
2.	Internet and World Wide Web Deitel HM, Deitel ,Goldberg ,	Third Edition
	Murach's PHP and MySQL 2nd Edition, by Joel Murach and	Ray Harris, Mike Murach &
3.	Associates	

School of Engineering & Technology Department of Computer Science and Engineering M.Sc. – Computer Science (With Specialisation in Artificial Intelligence) SEMESTER - II

DECC	Computer Organization and explications	L	Т	Р	С
DSCC			0	0	3
Prerequisite:	NA				-
Course Object	ctives:				
about the worki	e able to— ers about the design of basic the components of a Computer System. The lea ing principle of each device and how they work in the context of a computer s t I/O and memory concepts of a computer system.				
Course Outco	ome:				

Hathkhowapara, Azara, Guwahati 781017, Assam

At the end of successful completion of the course, students will be able to

- 1. Understand the basic organization of computer and different instruction formats and addressing modes.
- 2. Analyzetheconceptofpipelining, segmentregisters and pindiagram of CPU.
- 3. Understandandanalyzevariousissuesrelatedtomemoryhierarchy.
- $4. \ Evaluate various modes of data transfer between CPU and I/O devices.$
- 5. Examinevariousinterconnectionstructuresofmultiprocessors.

Module: 1

10 hours

Number system and logic gates : Decimal, Octal , Hexadecimal and binary numbers systems and their conversion and arithmetic. Negative and floating point number representation. Boolean algebra and Logic gates : definition of Boolean algebra and its theorems. Truth tables and Boolean functions , reduction Construction of logic circuits from a Boolean function.Combinational and sequential circuits : Adder, Subtractor, Decoder, Encoder, and Multiplexers, ROM.Sequential circuits : SR, D, JK, T flip flops.Introduction to Registers and counters.

Module: 2

8 hours

10 hours

8 hours

10 hours

Instructionformat-operandaddressingformats-three,twooneandzeroaddressinstructions;Instructionsetselection,Inst ructiontypes:datatransfer,datamanipulationandprogramcontrol;Addressing modes - direct, indirect, immediate, relative, indexed etc. Instruction execution process -fetchandexecutioncycles;datapathorganization-singleandtwobus;controlstructure:hardwiredandmicro-programme d; control steps in different instruction execution, Reduced instruction set computer(RISC), CISC and RISC characteristics, block diagram and pin diagram of 8085, use of registers inassemblylanguageprograms, assemblylanguageprogramming.

Module: 3

Reviewofadditionandsubtractionwithsignedmagnitudeand2'scomplementdata,hardwareimplementation,Multiplica tionalgorithm,Hardwareimplementation,hardwarealgorithm,Boothsmultiplicationalgorithm, Arraymultiplier, Divisionbasic, Floatingpoint arithmetic.

Module: 4

CharacteristicsofsimpleI/Odevices, their controllers; I/Ointerface -addressing: memory mapped and isolated I/O, data transfer: Synchronous and Asynchronous transfer, asynchronous data types of datatransfer:strobecontrol,handshaking.Modesofdatatransfer:programcontrolled,interruptinitiatedandDMA data transfer; polled interrupt controlled synchronization; Interrupt mechanism and deviceidentification-polling,vectored;priorityschemes-daisychaining,interruptmasking;ConceptofDMAcyclesteali ngandburstmode,DMAinterfacebusarbitrationmechanism;ConceptofI/Ochannelsandperipheralprocessors.

Module: 5

Memory hierarchies, Cache memory- Mapping techniques, Virtual memory- address space, memoryspace, address mappingusingpages.

Tot	Total Lecture hours					
Tex	Text Book					
1.	ManoM.M:ComputersystemArchitecture,PHI(EEE)					
2.	Hamacher, Vranesicand Zaky: Computer Organization, TMGH					
Ref	Reference Books					
1.	WilliamStallings, ComputerOrganizationandarchitecture, Pearson					
2.	Stallings:ComputerOrganization&Architecture, PE					
3.	Hayes:ComputerArchitecture&Organization,MGH					
4.	Hennessey:ComputerArchitecture,Elsevier					

DSCC	Advanced Database Management System	L	Т	Р	С
DSCC	Auvanceu Database Management System	3	0	0	3
Prerequisite:	Database Management System				

Hathkhowapara, Azara, Guwahati 781017, Assam

Course Objectives:

Students will be able to-

- 1. To understand the different types of database system architectures.
- 2. To Design and implement advanced object-oriented database queries using Structured Query Language.
- 3. To study and design distributed database with its applications
- 4. To Understand and study parallel database principles.
- 5. To administer a database by recommending and implementing procedures including database tuning,

backup, query processing, query optimization and recovery.

6. To learn advanced querying with Decision support system and information retrieval.

Course Outcome:

At the end of successful completion of the course, students will be able to

- 1. Describe how database management systems function internally. Interpret and comparatively criticise database systems architectures.
- 2. Implement major components of a database management system and analyse their performance.
- 3. Analyse and compare the fundamental query evaluation and concurrency control algorithms. Identify strengths and weaknesses of query evaluation plans. Optimise query evaluation plans.
- 4. Identify trade-offs among database systems techniques and contrast distributed/parallel techniques for OLTP and OLAP workloads.

Module:1

Formal review of relational database and FDs Implication, Closure, its correctness

Module:2

3NF and BCNF, Decomposition and synthesis approaches, Review of SQL99, Basics of query processing, external sorting, file scans

Module:3

Processing of joins, materialized vs. pipelined processing, query transformation rules, DB transactions, ACID properties, interleaved executions, schedules, serializability

Module:4

Correctness of interleaved execution, Locking and management of locks, 2PL, deadlocks, multiple level granularity, CC on B+ trees, Optimistic CC

Module:5

T/O based techniques, Multiversion approaches, Comparison of CC methods, dynamic databases, Failure classification, recovery algorithm, XML and relational databases

Total Lecture hours Text Book

1. R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw Hill, 2004

9 Hours

8 Hours

11 Hours

10Hours

8 Hours

46 hours

Hathkhowapara, Azara, Guwahati 781017, Assam

2.	A. Si	ilberschatz,	H.	Korth,	S.	Sudarshan,	Database	system	concepts,	5/e,	McGraw	Hill,
	2008.	•										

Reference Books

1. K. V. Iyer, Lecture notes available as PDF file for classroom use.

-	Software Engineering	L	Т	Р	С
DSCC		3	0	0	3
Prerequisite:	Basic programming skills and knowledge of database management sys	stem			
Course Objec	tives:				
Students will b					
-	the idea of decomposing the given problem into Analysis, Designing,	Imple	ement	ation	,
Testing and M	aintenance phases				
2. To provide a	an idea of using various process models in the software industry accor	ding	to giv	ven	
circumstances.					
	knowledge of how Analysis, Design, Implementation, Testing and Ma in a software project.	inten	ance j	proce	sses
Course Outco	me:				
At the end of s	successful completion of the course, students will be able to				
1 Desim	n and plan software solutions to real problems.				
-	Fy a range of solutions and critically evaluate and justify proposed des	ion se	Jutio	nç	
	ystems in terms of general quality attribute and possible trade-offs pre	-			0
	problem.	sente	u witi		C
given	problem.				
1 Apply	the knowledge techniques and skills in the development of a software		durat		
4. Apply	the knowledge, techniques, and skills in the development of a softwar	re pro	duct.		
	the knowledge, techniques, and skills in the development of a softwar	re pro		10 ho	urs
Module: 1	the knowledge, techniques, and skills in the development of a softwar SE challenges – SE approach – Software process – Characteristics of	Î]	10 ho	
Module: 1 Introduction:		SW]	10 ho	
Module: 1 Introduction: development p	SE challenges – SE approach – Software process – Characteristics of	SW	j proc	10 ho	SV
Module: 1 Introduction: development p Module: 2	SE challenges – SE approach – Software process – Characteristics of	SW	/ proc	10 ho ess – 3 hou	SV rs
Module: 1 Introduction: development p Module: 2 Software Req	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod	SW lels .	y proc	10 ho ess – 3 hou	SV rs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility str	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod	SW lels .	y proc	10 ho ess – 3 hou	SV rs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility str	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping	SW lels .	y proc	10 ho ess – 3 hou	SV rs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping	SW lels .	i proc	10 ho ess – 3 hou	SV rs ces
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation Module: 3 Software Pro	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling.	engin	i proc	10 ho ess – 3 hou g pro	SV rs ces
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation Module: 3 Software Pro	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling.	engin	i proc	10 ho ess – 3 hou g pro	SV rs ces
Module: 1 Introduction: development p Module: 2 Software Req – feasibility st documentation Module: 3 Software Pro Delphi methoo Module: 4	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling.	Engin - S/V	i proc proc eeerin V OMC	10 ho ess – 3 hou g pro 10 ho 9 mod 3 hou	SV rs ces el - rs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation Module: 3 Software Pro Delphi methoo Module: 4 Design Conce	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling. ject Management - S/W cost estimation – Function point models – 1 – S/W challenges – S/W maintenance. pts and Principles – Function-oriented software design – Object-orien	Engin - S/V	i proc proc eeerin V OMC	10 ho ess – 3 hou g pro 10 ho 9 mod 3 hou	SW rs ces el - rs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation Module: 3 Software Pro Delphi method Module: 4 Design Conce – Object mode	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling.	Engin - S/V	i proc proc eerin V I OMC	10 ho ess – 3 hou g pro 10 ho 0 mod 3 hou re de	SV rs ces el el sig
Module: 1 Introduction: development p Module: 2 Software Req – feasibility str documentation Module: 3 Software Pro Delphi method Module: 4 Design Conce – Object mode Module: 5	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling. ject Management - S/W cost estimation – Function point models – 1 – S/W challenges – S/W maintenance. pts and Principles – Function-oriented software design – Object-orien	engin – S/V	i proc proc eerin V OMC softwa	10 ho ess – 3 hou g pro 10 ho 3 hou are de	sv rs ces el sig: urs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility str documentation Module: 3 Software Pro Delphi methoc Module: 4 Design Conce – Object mode Module: 5 Software Test	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping a – Analysis and modeling. ject Management - S/W cost estimation – Function point models – 1 – S/W challenges – S/W maintenance. pts and Principles – Function-oriented software design – Object-orien eling using UML – User interface design.	SW lels engin – S/V COC nted s	i proc proc eeerin V OMC i t oftwa k box	10 ho ess – 3 hou g pro 10 ho 9 mod 3 hou re de 10 ho	rs ces el rs sig urs
Module: 1 Introduction: development p Module: 2 Software Req – feasibility stu documentation Module: 3 Software Pro Delphi method Module: 4 Design Conce – Object mode Module: 5 Software Test White box tes	SE challenges – SE approach – Software process – Characteristics of process model – S/W Engineering Paradigm – Software life cycle mod uirements – Functional & non-functional – user-system requirement udies – elicitation – validation & management – software prototyping n – Analysis and modeling. ject Management - S/W cost estimation – Function point models – 1 – S/W challenges – S/W maintenance. pts and Principles – Function-oriented software design – Object-orien ding using UML – User interface design.	engin – S/V COC nted s	i proc proc eerin V OMO i t oftwa ation	10 ho ess – 3 hou g pro 10 ho 0 mod 3 hou are de 10 ho testi testi	sv rs ces urs el rs sig urs ng

Hathkhowapara,Azara,Guwahati781017,Assam

Tota	al Lecture hours	46 hours
Tex	t Book	
1.	R. S. Pressman, Software Engineering - A practitioners approach, III Edition, McGr	aw Hill
	International editions, 1992	
2.	Ian Sommerville, Software Engineering, Pearson Education Asia, VI Edition, 2000	
Refe	erence Books	
1.	PankajJalote, An Integrated Approach to software Engineering, Springer Verlag, 19	97
2.	James F. Peters and WitoldPedryez, Software Engineering – An Engineering Approach, J and Sons, New Delhi	John Wiley

OEC	IMAGE PROCESSING	L 3	T 1	P 0	C 4
Prerequisite:	Basic knowledge of Mathematics/ Statistics	U	-	v	
Course Object	tives:				
Students will l					
	udy the image fundamentals and mathematical transforms necess	sary f	for in	nage	
proce	0				
	tudy the image enhancement techniques.				
	tudy image restoration procedures.				
	tudy the image compression procedures.				
Course Outco					
Learning (Dutcomes At the end of successful completion of the course, str	uden	ts wi	ll be	able
CO1: Review	v the fundamental concepts of a digital image processing system.				
	yze images in the frequency domain using various transforms.	-			
	ate the techniques for image enhancement and image restoration	1.			
	gorize various compression techniques.				
CO5: Interp	ret image segmentation and representation techniques.				
-					
MODULE 1	:Introduction		:	5Hou	rs
Light, Brigh	tness adaption and discrimination, Pixels, coordinate conv	entic	ons,	Imag	ging
• •	erspective Projection, Spatial Domain Filtering, sampling and qua			-	
MODULE 2	:Spatial Domain Filtering			6 Ho	urs
Intensity tra	unsformations, contrast stretching, histogram equalization,	Cor	relat	ion	and
•	Smoothing filters, sharpening filters, gradient and Laplacian	001			
convolution,	Shiootining Inters, sharpenning Inters, gradient and Euphaetan				
MODULE 3	Filtering in the Frequency Domain			6Hou	rs
Hotelling Tr	onsform Fourier Transforms and monorties FFT (Designation	in E			and
-	ansform, Fourier Transforms and properties, FFT (Decimation		-	•	
	in Time Techniques), Convolution, Correlation, 2-D sampling	$, D_{13}$	scret	e Co	sine
Transform, F	requency domain filtering				
MODULE 4	: Image Segmentation			6 ho	urs
Boundary de	tection based techniques, Point, line detection, Edge detection, E	Edge	linki	no la	ocal
•		U		0	
processing, r	egional processing, Hough transform, Thresholding, Iterative th	168II	Juli	g, Ul	.su s

Hathkhowapara, Azara, Guwahati 781017, Assam

method, Moving averages, Multivariable thresholding, Region-based segmentation, Watershed algorithm, Use of motion in segmentation **MODULE 5:Image Restoration** 6 Hours Basic Framework, Interactive Restoration, Image deformation and geometric transformations, imagemorphing, Restoration techniques, Noise characterization, Noise restoration filters, Adaptive filters, Linear, Position invariant degradations, Estimation of Degradation functions, Restoration from projections **MODULE 6:Image Compression** 9 hours Encoder-Decoder model, Types of redundancies, Lossy and Lossless compression, Entropy of an informationsource, Shannon's 1st Theorem, Huffman Coding, Arithmetic Coding, Golomb Coding, LZW coding, Transform Coding, Sub-image size selection, blocking artifacts, DCT implementation using FFT, Run length coding, FAX compression (CCITT Group-3 and Group-4), Symbol-based coding, JBIG-2, Bit-plane encoding, Bit-allocation, Zonal Coding, Threshold Coding, JPEG,Lossless predictive coding, Lossy predictive coding, Motion Compensation **MODULE6:** Wavelet based Image Compression 6 hours Expansion of functions, Multi-resolution analysis, Scaling functions, MRA refinement equation, Wavelet series expansion, Discrete Wavelet Transform (DWT). Continuous Wavelet Transform, Fast Wavelet Transform, 2-D wavelet Transform, JPEG-2000 encoding, Digital Image Watermarking **MODULE7: Morphological Image Processing** 6 hours Basics, SE, Erosion, Dilation, Opening, Closing, Hit-or-Miss Transform, Boundary Detection, Hole filling, connected components, convex hull, thinning, thickening, skeletons, pruning, Geodesic Dilation, Erosion, Reconstruction by dilation and erosion 10 **MODULE8:** Case Studies Different case studies on applications of Image Processing Total hours 60 hours Text Book Digital Image Processing by Rafael C Gonzalez & Richard E Woods, 3rd Edition 1. Fundamentals of Digital Image Processing by Anil K Jain 2. **Reference Books** Digital Image Processing by William K Pratt 1.

OEC	Speech And Natural Language Dragoging	L	Т	Р	C
UEC	Speech And Natural Language Processing	3	1	0	4
Prerequisite:	Machine Learning				
Course Object	tives:				

Hathkhowapara, Azara, Guwahati 781017, Assam

Students will be able to-

- 1. Understand approaches to syntax and semantics in NLP.
- 2. Comprehend approaches to discourse, generation, dialogue and summarization within NLP.
- 3. Incorporate current methods for statistical approaches to machine translation.
- 4. Design machine learning techniques used in NLP, including hidden Markov models and probabilistic context-free grammars, clustering and unsupervised methods etc.

Course Outcome:

At the end of successful completion of the course, students will be able to :

- 1. Apply the principles and Process of Human Languages and identify semantics and pragmatics of thelanguages using computers.
- 2. Implement the current methods of statistical approaches to machine translation.
- 3. Perform POS tagging for a given natural language and Select a suitable language modelling technique based on the structure of the language.
- 4. Develop a Statistical Methods for Real World Applications and explore deep learning based NLP.

Module:1

Human languages, models, ambiguity, processing paradigms; Phases innatural language processing, applications. Text representation in computers.

Module:2

Introduction to corpus, elements in balanced corpus, TreeBank, PropBank, WordNet, VerbNet etc. Resource management with XML, Management of linguistic data with the help of GATE, NLTK.

Module:3

Regular expressions, Finite State Automata, word recognition, lexicon.Morphology, acquisition models, Finite State Transducer. N-grams, smoothing, entropy, HMM, ME, SVM, CRF.

Module:4

Part of Speech tagging- Stochastic POS tagging, HMM, Transformation based tagging (TBL), Handling of unknown words, named entities, multi word expressions.

Module:5

A survey on natural language grammars, lexeme, phonemes, phrases and idioms, word order, agreement, tense, aspect and mood and agreement, Context Free Grammar, spoken language syntax. Parsing–Unification, probabilistic parsing, TreeBank

Module:6

Meaningrepresentation, semanticanalysis, lexical WordNeZ. Word Sense semantics, Disambiguation-Selectional restriction, machine learning approaches, dictionary based approaches.

Module:7

Reference resolution, constraints on co-reference, algorithm for pronounresolution, text coherence, discourse structure.

Module:8

Vector space model, term weighting, homonymy, polysemy, synonymy, improving user queries. Machine Translation-Overview.

8 Hours

7 Hours

6 Hours

6 Hours

6 Hours

6 Hours

5 Hours

6 Hours

Hathkhowapara, Azara, Guwahati 781017, Assam

Mo	dule: 9	10 Hours
	ferent case studies on applications of Speech And Natural Language Processin	ng
	al Lecture hours	60 hours
	t Book	
1	Daniel Jurafsky and James H. Martin. Speech and Language P. 2e, Pearson Education, 2009.	rocessing,
2	Christopher D. Manning and Hinrich Schütze, Foundations of Statistical Na Language Processing. MIT Press, 1999.	atural
Ref	erence Books	
1	James Allen, Natural language Understanding 2e, Pearson Education, 1994.	
2	Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing Analyzing Text with the Natural Language Toolkit.	with Python –
3	Bharati A., Sangal R., ChaitanyaV., Natural language pr Paninian perspective, PHI, 2000.	rocessing: a
4	Siddiqui T., Tiwary U. S., Natural language processing and retrieval, OUP, 2008.	Information
5	Ping Liu Sontiment Analysis and Opinion Mining Morgan & Claynool Pul	hlichard
5 6	Bing Liu. Sentiment Analysis and Opinion Mining, Morgan & Claypool Pul Jacob Perkins, Python Text Processing with Nltk 2.0 Cookbook	JUSHEIS
	DSCC Machine Learning L 3	T P C 0 0 3
	requisite:	
	urse Objectives: dents will be able to–	
	 Understand the basic theory underlying machine learning. Formulate machine learning problems corresponding to different applicat Understand a range of machine learning algorithms along with their stren weaknesses. Apply machine learning algorithms to solve problems of moderate compl Apply the algorithms to a real-world problem, optimize the models learned the expected accuracy that can be achieved by applying the models. 	gths and exity.
	the end of successful completion of the course, students will be able to	
	 Have a good understanding of the fundamental issues and challenges of n learning: data, model selection, model complexity, etc. Understand the strengths and weaknesses of many popular machine learnin Appreciate the underlying mathematical relationships within and across N Learning algorithms and the paradigms of supervised and un-supervised I Design and implement various machine learning algorithms in a range of applications. 	ng approaches. Machine learning.

Hathkhowapara,Azara,Guwahati781017,Assam

Module:1 (Introduction)	8 Hours
Definition of Learning systems; Goals and applications of Machine learning developing a learning system, training data, Problems, data and tools, su unsupervised learning.	-
Module:2 (Data preprocessing and visualization)	8 Hours
Data cleaning and preprocessing, Feature engineering, Handling Outliers, Data visualization	
Module:3 (Model evaluation and selection)	6 Hours
Model performance metrics, Bias-variance tradeoff, Cross-validation, Grid search	h
Module:4 (Supervised learning)	10 Hours
Linear regression, Logistic regression, Decision trees, Random forests, Su machines, Naive Bayes, K-nearest neighbors, Neural networks	ipport vector
Module:5(Unsupervised learning)	7 Hours
K-means clustering, Hierarchical clustering, DBSCAN clustering, Principal comp analysis,	onent
Module :6 (Applications of machine learning)	6 Hours
Natural language processing, Image recognition, Recommender systems, Fraud de	etection
Total Lecture hours	46 hours
Text Book	1.2006
1. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 1s	st ed. 2006
2. Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and Concepts, Tools, and Techniques to Build Intelligent Systems, Shroff/O'Reilliedition (2022)	
3 Tom Mitchell, Machine Learning, First Edition, McGraw- Hill (1997)	
Reference Books	7771 1 1 1 1
1. Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd., (2015)	
2 Kevin Patrick Murphy, Machine Learning: a Probabilistic Perspective, MIT I	Press 2012

Hathkhowapara, Azara, Guwahati 781017, Assam

3	Sebastian Raschka, Machine Learning Q and AI.
4	David Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press
5	Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction (Adaptive
	Computation and Machine Learning) MIT Press; second edition (2018).
6	A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning, Published by
	Cambridge University Press, 2020.
7	Yudi Pawitan, In All Likelihood: Statistical Modelling And Inference Using Likelihood,
	Oxford University Press, 1st edition (2013)

ES	C	MACHINE LEARNING LAB	L 0	<u>Т</u> 0	P 4	C 2
Prereg	uisite:Basic knowledge	e of Python/Java,C-C++	v	U	-	
	e Objectives:					
	ts will be able to–					
1.		hematical and statistical prospective of machine le	arnir	ng al	goritl	hms
-	through python prog					
		learning problems corresponding to different appl				
3.		achine learning algorithms along with their strengt	ths a	nd		
	weaknesses.					
Course	e Outcome:					
		npletion of the course, students will be able to				
4	Decign and evaluate	the uncurrent is ad models through puttion in built	funa	tion		
	-	the unsupervised models through python in built			•	
5.		e learning models pre-processed through various a ms by python programming.	leatu	re		
6				alay		
0.	problems.	rious reinforcement algorithms to solve real time	com	piex		
7	•	using machine learning techniques				
/.	Design application u	ising machine learning teeninques				
Practic	cal experiments:				24 He	ours
1.	Write a programme	using Python to implement the Naive Bayes Clas	ssifie	er.		
	······································					
2.	Write a programme	using Python to implement the Decision Trees.				
3.	Write a programme	using Python to implement the Linear Regressio	n wi	th on	e	
	variable.					
1	Write a programme	using Python to implement the Linear Regressio	n wi	th m	ultin	
ч.	write a programme	using I yhion to implement the Effect Regressio	11 W1	.11 111	unipi	C
	variable.					
5.	Write a programme	using Python to implement the Logistic Regressi	ion w	ith 1	nulti	ple
	variables .					
6.		using Python to implement theBack-propagation				

Hathkhowapara, Azara, Guwahati 781017, Assam

- 7. Write a programme using Python to implement the Artificial Neural Network.
- 8. Write a programme using Python to implement the SVM.
- 9. Write a programme using Python to implement the K-means clustering algorithm.
- 10. Write a programme using Python to implement the PCA.

Tex	t Book
1.	Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, The MIT Press.
2.	Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education,
	2016.
Ref	erence Books
1. 2	C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2010.
	Andrew NG, "Machine Learning Yearning", Amazon.com Services LLC, Kindle
	Edition, 2019.

	Advanced DBMS Lab	L	Т	Р	С
DSCC		0	0	4	2
Prerequisite:	Basic programming skills	1			1
Course Objec	tives:				
Students will	be able–				
1. To explo	re the features of a Database Management Systems				
2. To interfa	ace a database with front end tools				
3. To under	stand the internals of a database system				
Course Outo	come:				
At the end of	successful completion of the course, students will be able to				
	v various advanced queries such as relational constraints, joi gate functions, trigger, views and embedded SQL	ns, so	et op	erati	ons,
	e relational Database system.				
	zze the internals of a database system.				
T. Anary	ze the internals of a database system.				
Experiments					
Students will	perform experiments on the following topics:				
1. Data	Definition Language Commands				
	Manipulation Language Commands				
	Control Language, Transfer control Language Commands				
	ilt Functions				

- 4. In Built Functions
- 5. Nested Queries and Join Queries

Hathkhowapara, Azara, Guwahati 781017, Assam

- 6. Set Operations
- 7. Views
- 8. Control Structure
- 9. Procedure and Function
- 10. 10. Trigger

Total	Lab hours	30 hours
Refer	rence Books	
1.	Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System C 6 th edition, Tata McGraw Hill, 2011	Concepts",
2.	Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", 4 Pearson/Addision wesley, 2007	th Edition,

School of Engineering & Technology

Department of Computer Science and Engineering

M.Sc. – Computer Science (With Specialisation in Artificial Intelligence) SEMESTER - III

		L	Т	Р	С
DSCC	DEEP LEARNING	<u> </u>	0	0	3
Prerequisite:	Basic knowledge of Statistics	J	v	U	
Course Objec					
Students will b					
1. Unde	rstand the mathematical and statistical prospective of deep learn	ing a	lgori	thms	
	gh python programming.	U	U		
	ulate deep learning problems corresponding to different application	tions			
	y a range of deep algorithms along with their strengths and weak				
			••••		
Course Outco	ome:				
1. To under cognitiv	Outcomes At the end of successful completion of the course, st stand the role of deep neural networks in engineering, artificial we modelling through the study of the most important deep neural the problems using various deep learning techniques.	l inte	lliger	nce, a	und
3. To desig	n application using deep learning techniques.				
Module 1:	Basics of Deep Learning		1	1 Ho	ours
Biological No	euron, Idea of computational units, McCulloch-Pitts unit and T	hrest	noldi	ng lo	gic,

Hathkhowapara,Azara,Guwahati781017,Assam

	ear Perceptron, Perceptron Learning Algorithm, Linear separability, Convergence theorem
for	Perceptron Learning Algorithm, Multilayer Perceptrons (MLPs), Representation Power of
	Ps, Sigmoid Neurons, Gradient Descent: Momentum, Based GD, Nesterov Accelerated GD,
	chastic GD, AdaGrad, RMSProp, Adam, Feed forward Neural Networks, Representation
Pov	ver of Feed forward Neural Networks, Feed forward Neural Networks and Back propagation
Mo	Delta 2: Deep Feed Forward Neural Networks: 12 Hours
Gra	dient based learning; hidden units; architecture design; back-propagation;
hyp	erparameters.Regularization and Practical Aspects of Deep Learning: Regularization and
und	er-constrained problems, dataset augmentation, noise robustness, early stopping, bagging,
dro	pout, normalizing inputs; vanishing/exploding gradients, weight initialization for deep
net	works; hyperparameter tuning; batch normalization.
	Doule 3: Convolution Neural Networks and Recurrent Neural 12 Hours
	tworks
Coi	volutional Neural Networks, CNN architectures: LeNet, AlexNet, ZF-Net, VGGNet,
Goo	gLeNet, ResNet, Recurrent Neural Networks, Back propagation through time (BPTT),
Var	ishing and Exploding Gradients, Truncated BPTT, GRU, LSTMs, Encoder Decoder
Mo	dels, Attention Mechanism, Attention over images
М	odule:4 Case studies 10 Hours
	ge Classification/ Text Classification
11116	ge classification Text classification
Tot	al hours 45 hours
Tex	t Book
1.	Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education,
	2016.
2.	Nielsen, Michael A., Neural Networks and Deep Learning, 2015.
2.	Triciscii, michael A., mediai metworks and Deep Learning, 2013.
Def	
Rei 1.	erence Books Chollet, Franois. Deep Learning with Python, 2017.
1. 2	Chonet, Franois. Deep Learning with Fytholi, 2017.
	Dudume Nikhil and Nicholas Lagassia, Eurodementals of Deer Lagraine, Decimination
	Buduma, Nikhil, and Nicholas Locascio, Fundamentals of Deep Learning: Designing
	Next-generation Machine Intelligence Algorithms, O'Reilly Media, Inc., 2017.

DSCC	Operating System	L	Т	Р	С
		3	0	0	3
Prerequisite: Programming skills (Knowledge of C), elementary data structures and algorithms, computer architecture.					

Hathkhowapara, Azara, Guwahati 781017, Assam

Course Objectives:

- 1. To learn and understand the Concepts of operating system
- 2. The core structure, functions and design principles of operating system
- 3. To Learn and understand operating system services
- 4. Interposes communications and basic concepts of virtualization

Course Outcome:

On successful completion of the course,

- 1. Explain fundamental of operating system and Compare Various Algorithm used for CPU Schedul Synchronization and Disk Scheduling Algorithm.
- 2. Apply various concepts related with Deadlock and Memory management to solve Problems.
- Analyse File Systems Management, I/O Management, Protection and Security Mechanism in Op System.
- **4.** Develop practical knowledge on shell Programming, thread, process, scheduling algorithms on di environment of Operating System.

7 hours

8 hours

Module: 1

Architecture, Goals & Structures of O.S, Basic functions, Interaction of O. S. & hardware architecture, System calls, Batch, multiprogramming. Multitasking, time sharing, parallel, distributed & real -time O.S.

Module:2

Process Concept, Process states, Process control, Threads, Uni-processor Scheduling: Types of scheduling: Preemptive, Non preemptive, Scheduling algorithms: FCFS, SJF, RR, Priority, Thread Scheduling, Real Time Scheduling. System calls like ps, fork, join, exec family, wait.

Module:3	8 hours
Basic Concepts of Concurrency, Cooperating process, Advantage of Cooperating process Buffer - Shared-Memory Solution, Inter-process Communication (IPC), Basic Concepts of Ir	
Communication and Synchronization	iter process
Module: 4	7 hours
Principles of deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, S like signal, kill.	ystem calls
Module: 5	8 hours
Memory Management requirements, Memory partitioning: Fixed and Variable Partitionin	g, Memory
Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Fragmentation, Swa	pping, and
Paging. Segmentation, Demand paging Virtual Memory: Concepts, management of	VM, Page
Replacement Policies (FIFO, LRU, Optimal, Other Strategies), Thrashing.	

Hathkhowapara, Azara, Guwahati 781017, Assam

Module: 6 8 hours I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance. Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting. **Total Lecture hours** 46hours Text Books 1. Operating System Concepts Essentials, 9th Edition by Avi Silberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition. 2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India. **Reference Book** 1. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing 2. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley

3. Design of the UNIX Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India

ESC	Big Data Analytics	L	Т	Р	С
		3	0	0	3
Prerec	uisite: Basic knowledge of Mathematics/ Statistics/Programming				
Cours	se Objectives:				
storag differe	on, it also focuses on the "technologies", i.e., the tools/algorithm e, processing of Big Data. It also helps a student to perform a va ent data sets and to arrive at positive conclusions. as Outcome:				
	ning Outcomes At the end of successful completion of the com	urse, sti	udents w	ill be a	able
to	6	,			
CO1:	Understand Big Data and its analytics in the real world				
CO2	: Analyze the Big Data framework like Hadoop and NOSQL to process Big Data to generate analytics	efficier	ntly store	e and	
CO3	: Design of Algorithms to solve Data Intensive Problems using 1	Map Re	educe Pa	radigr	n

CO4 :Design and Implementation of Big Data Analytics using Spark to solve data

Hathkhowapara,Azara,Guwahati781017,Assam

intensive problems and to generate analytic			
intensive problems and to generate analytic			
MODULE 1: Introduction	10 Hours		
Introduction to Big Data, introduction to Enabling Technologies for Big Data Big Data Platforms, introduction to Big Data Storage Platforms for Large Sca introduction to Big Data Streaming Platforms for Fast Data, Relationships and I Graph Databases.	le Data Stor	rage,	
MODULE 2: Mapreduce Programming	12 Hours		
Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Co time applications using MapReduce, Data serialization and Working with comr formats, Big data serialization formats.	-		
MODULE 3:Big Data Applications	12 Hours		
Introduction to Big Data Applications using machine learning			
MODULE 4: Introduction to Spark		12	
		Ho urs	
Introduction to Spark, introduction of big data Machine learning with S	park, Lang	uage	
processing with Spark, Analysis of Streaming Data with Spark, Application	ns of Spark	ML	
Library, Basic Neural Network and Tensor Flow			
Total hours	s 46 hours		
Text Books 1. Seema Acharya, Subhashini Chellappan, "Big Data Analytics", 1st Edition, W Reference Books	/iley, 2015		
1. Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.			
2. Chuck Lam, Hadoop in Action, December, 2010.			
3. Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge Univ Press.	rersity		
4. I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.			
5. Erik Brynjolfsson et al., The Second Machine Age: Work, Progress, and Pros Time of Brilliant Technologies, W. W. Norton & Company, 2014	sperity in a		
6. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop So	olutions", 1 s	st	

Hathkhowapara, Azara, Guwahati 781017, Assam

Edition, Wrox, 2013.

7. Chris Eaton, Dirk Deroos et. al., "Understanding Big data", Indian Edition, McGraw Hill, 2015.

8. Tom White, "HADOOP: The definitive Guide", 3 rd Edition, O Reilly, 2012.

0. Vignesh Prajapati, "Big Data Analytics with R and Hadoop", 1 st Edition, Packet Publishing Limited, 2013

DSC	Data Science	L	Т	Р	С
C		3	1	0	4

Course Objective:

Data Science is a fast-growing interdisciplinary field, focusing on the analysis of data to extract knowledge and insight. This course will introduce students to the collection. Preparation, analysis, modelling, and visualization of data, covering both conceptual and practical issues. Examples and case studies from diverse fields will be presented, and hands-on use of statistical and data manipulation software will be included.

Course Outcomes

CO 1: Understand the processes of data science - identifying the problem to be solved, data collection, preparation, modelling, evaluation, and visualization.

CO 2: Able to develop and appreciate various techniques for data modelling and mining.

CO 3: Be cognizant of ethical issues in many data science tasks.

CO 4: Learn skills to analyse real time problems using Python/R

CO 5: Able to do the exploratory data analysis on real time datasets using Python/R

Mod ule	Topic	Course Content	Hours
Ι	Introduction	Introduction, Toolboxes: Python, fundamental libraries for data Scientists. Integrated development environment (IDE). Data operations: Reading, selecting, filtering, manipulating, sorting, grouping, rearranging, ranking, and plotting.	9
Π	Descriptive Staistics	Descriptive statistics, data preparation. Exploratory Data Analysis data summarization, data distribution, measuring asymmetry. Sample and estimated mean, variance and standard score. Statistical Inference frequency approach, variability of estimates, hypothesis testing using confidence intervals, using p-values	11
III	Supervised	Supervised Learning: First step, learning curves,	9

Hathkhowapara,Azara,Guwahati781017,Assam

	Learning	training-validation and test. Learning models generalities,	
		support vector machines, random forest. Examples	
IV	Regression Analysis	Regression analysis, Regression: linear regression simple linear regression, multiple & Polynomial regression, Sparse model. Unsupervised learning, clustering, similarity and distances, quality measures of clustering, case study.	11
V	Network Analysis	Network Analysis, Graphs, Social Networks, centrality, drawing centrality of Graphs, PageRank, Ego-Networks, community Detection	10
VI	Case Studies	Perform case studies and experiments on different examples and applications of Data Science	10
		Total	60

TEXT/REFERENCES BOOK

- 1. Introduction to Data Science a Python approach to concepts, Techniques and Applications, Igual, L;Seghi', S. Springer, ISBN:978-3-319-50016-4
- 2. Data Analysis with Python A Modern Approach, David Taieb, Packt Publishing, ISBN-9781789950069
- 3. Python Data Analysis, Second Ed., Armando Fandango, Packt Publishing, ISBN: 9781787127487

		L	Т	Р	C
DSCC	Advanced Web Technology	3	0	0	3
Prerequisite:					
Course Obje	ctives:				
throu 5. Forn 6. Appl	erstand the mathematical and statistical prospective of machine keigh python programming. The machine learning problems corresponding to different app by a range of machine learning algorithms along with their streng stresses.	licati	ons.	goritl	hms
Course Outco At the end of	ome: f successful completion of the course, students will be able to				
9. Evalu engin	gn and evaluate the unsupervised models through python in built nate the machine learning models pre-processed through various neering algorithms by python programming.	featu	ire		
10. Design and apply various reinforcement algorithms to solve real time complex problems.					
	gn application using machine learning techniques			6 H01	irs

History of web Development, Time line, Motivation, Categories of Web Applications, Characteristics of

Hathkhowapara, Azara, Guwahati 781017, Assam

Web Applications. Evolution and Need for Web Engineering, Web Engineering Models, Software Engineering v/s Web Engineering World Wide Web: Introduction to TCP/IP and WAP, DNS, Email, TelNet, HTTP and FTP. Introduction to Browser and search engines, Search fundamentals, Search strategies, Directories search engines and Meta search engines, Working of the search engines, Miscellaneous Web Browser details, Introduction to Web Servers: Features of web servers, caching, case study-IIS, Apache, Configuring web servers.

Module:2 INFORMATION ARCHITECTURE 9 Hours The role of the Information Architect, Collaboration and Communication, Organizing Information, Organizational Challenges, Organizing Web sites parameters and Intranets Creating Cohesive Websites: Conceptual Overview Website Development, Website Design issues, Conceptual Design, High-Level Design, Indexing the Right Stuff, Grouping Content. Architectural Page Mockups, Design Sketches, Navigation Systems. Searching Systems Good & bad web design, Process of Web Publishing. Phases of Web Site development, enhancing your web-site, submission of website to search engines Web security issues, security audit of websites, Web effort estimation, Productivity, Measurement, Quality usability and reliability. Requirements Engineering for Web Applications: Introduction, Fundamentals, Requirement Source, Type, Notations Tools, Principles Requirements Engineering Activities, Adapting RE Methods to Web Application. Module:3 TECHNOLOGIES FOR WEB APPLICATIONS **11Hours** HTML and DHTML, HTML Basic Concepts, Static and dynamic HTML, 8 Class Hours/week 4 Expected weeks 12 Total hrs. of classes 36+12 = 48 ASSAM SCIENCE AND TECHNOLOGY

UNIVERSITY Page 6 Structure of HTML documents, HTML Elements, Linking in HTML, Anchor Attributes, Image Maps, Meta Information, Image Preliminaries, Layouts, Backgrounds, Colors and Text, Fonts, Tables, Frames and layers, Audio and Video Support with HTML Database integration, CSS, Positioning with Style sheets, Forms Control, Form. Elements. Introduction to CGI PERL, JAVA SCRIPT, PHP, ASP, Cookies Creating and Reading Cookies. Error Analysis : Utility of error analysis, Precision/Recall, Error Metrics for Skewed Classes

Module:4 TECHNOLOGIES FOR WEB APPLICATIONS

10 Hours Introduction of XML, Validation of XML documents, DTD, Ways to use XML, XML for data files, HTML Vs XML, Embedding XML into HTML documents, Converting XML to HTML for Display, Displaying XML using CSS and XSL, Rewriting HTML as XML, Relationship between HTML, SGML and XML, web personalization, Semantic web, Semantic Web Services, Ontology.

Module:5 E- COMMERCE 9 Hours E-commerce Business Models, The Internet and World Wide Web: E-commerce Infrastructure, Building an E-commerce Web Site, Electronic Commerce environment and opportunities. Modes of Electronic Commerce, Approaches to safe Electronic Commerce, Electronic Cash and Electronic Payment Schemes ,Online Security and Payment Systems, Ecommerce Marketing Concepts, Advertising on the Internet: issues an Technologies, Ecommerce Marketing Concepts Electronic Publishing issues, approaches, legalities and technologies, Privacy and Security Topics: Introduction, Web Security, Encryption schemes, Secure Web document, Digital Signatures and Firewalls, Cyber crime and laws, IT Act. Total hours 45 hours

Text Book

1.	Roger S.Pressman, David Lowe, "Web Engineering", Tata Mcgraw Hill Publication, 2007
2.	Achyut S Godbole and AtulKahate, "Web Technologies", Tata McGraw Hill

3. Gopalan N P, Akilandeswari "Web Technology: A Developer s Perspective", PHI

Reference Books

1.	CHRIS BATES Web Programming: Building Internet applications Wiley
2.	Beginning XML 4th Edition Hnter, Refter, Fawset Wiley India .
3.	Internet & World Wide Web How to Program, Pearson education, 3rd edition, by: H.M. Deitel, P.J. Deitel, A.B. Goldberg

Hathkhowapara, Azara, Guwahati 781017, Assam

ESC]	DEEP	LEAR	RNING	G LA	B			L 0	T 0	P 4	C 2
Prereauisite:	Basic knowle	dge of H	Python							U	U	4	
Course Obje		0											
throu 2. Form	be able to- erstand the n ugh python p nulate deep l ly a range of	rogram earning	nming. g proble	ems cor	rrespo	nding	to di	fferent	appli	cation	5.	ithms	\$
Course Outco	ome:												
At the end o	f successful	comple	etion of	f the co	ourse, s	studer	nts wi	ll be ab	ole				
cogniti 2. To solv	rstand the ro ve modelling ve the proble gn applicatio	g throug ms usir	gh the s	study of ous dee	f the n ep lear	nost i ming (mport techni	tant dee			-		
Practical exp	eriments:									24	Hou	rs	
Ĩ													
11. Write	e a program	using	Pytho	on to in	npleme	ent Se	elf Or	ganizin	g Ma	aps (SC	OMs).		
12. Write	e a program	using	Python	ı to imp	plemer	nt the	Mult	ilayer P	Perce	ptrons	(MLP	s)	
13. Write	e a program	using	Python	ı to imp	plemer	nt the	Radia	al Basis	s Fun	ction N	Vetwo	rks.	
14. Write	e a program (to imple	ement A	Autoen	ncoder	•							
15. Write	e a program	using	Python	ı to imp	plemer	nt Coi	nvolu	tional N	Jeura	l Netw	orks	(CNN	√s)
16. Write	e a program	using	Python	to imp	plemer	nt the	Recu	rrent N	eural	Netwo	orks (RNN	(s).
17. Write	e a program	using	Python	ı to imp	plemer	nt the	Long	Short '	Term	Memo	ory N	etwo	rks
(LST	Ms)												
18. Write	e a program (to imple	ement e	encode	er-deco	oder a	rchite	cture w	vith A	Attentio	on Me	chan	isn
19. Write	e a program	using	Python	ı to imp	plemer	nt the	Gene	rative A	Adve	rsarial	Netw	orks	
(GAN	Ns).												
Text Book													
I CAL DUUK												tion,	

Hathkhowapara,Azara,Guwahati781017,Assam

	2016.
2.	Nielsen, Michael A., Neural Networks and Deep Learning, 2015.
Refere	ence Books
1. 2	Chollet, Franois. Deep Learning with Python, 2017.
	Buduma, Nikhil, and Nicholas Locascio, Fundamentals of Deep Learning: Designing
	Next-generation Machine Intelligence Algorithms, O'Reilly Media, Inc., 2017.

AEC	MINOR PROJECT	L	T	P	С
ALC	MINOK FROJECI	0	0	8	4
	Guidelines will provided by the University from time to time				

SEC	SEC SEMINAR PAPER		Т	P	C
SEC	SEIVIIINAK FAFEK	0	0	2	1
	Guidelines will providedby the University from time to time				

School of Engineering & Technology Department of Computer Science and Engineering M.Sc. – Computer Science (With Specialisation in Artificial Intelligence) SEMESTER –IV

VAC	Universal Human Values	L	Т	Р	С
VAC	Universal Human Values	2	1	0	3

Hathkhowapara, Azara, Guwahati 781017, Assam

Guidelines will provided by the University from time to time

IC	Elective-IV (As per Table)(As per SWAYAM)	L	Т	Р	С		
IC.		3	0	0	3		
1. Quantum Computing							
2. Molecular Computing							
3. Nano Technology							
4. Robotics							
5. Rem	ote Sensing & GIS						

DSCC	Elective-V (As per Table)(As per SWAYAM)	L	Т	Р	С		
DSCC		3	0	0	3		
	Guidelines will provided by the University from time to time						
1. Interne	1. Internet of Things						
2. Comp	2. Computer network and Internet security						
3. Wirele	3. Wireless Networks						
4. Android Mobile Application Dev							
5. Datab	ase and content organization						

AEC / SEC	System Development Project	L	Т	Р	С	
AEC / SEC		0	0	22	11	
	Guidelines will provided by the University from time to time					