

School of Engineering & Technology

M.Tech. -Computer Science and Engineering

Semester I, II, III & IV

AY 2023-24

Semester I

Sl.	Cours	Course	Course Name	Hours per		urs per Credi		Mark	
No	e	Code		week		week t		,	
	Туре			L	Т	Р	C	CA	FA
The	ory								
1.	BSC		Mathematical and Statistical					40	60
			Foundations	3	0	0	3		
2.	ESC		Advanced Data Structures &					40	60
			Algorithms	3	0	0	3		
3.	MC		Research Methodology and IPR	2	0	0	2	40	60
4.	ESC		Machine Learning	3	1	0	4	40	60
5.	ESC		DSE 1	3	0	2	4	40	60
6.	AC		Audit Course	2	0	0	0	0	0
Pra	ctical		· · · · · · · · · · · · · · · · · · ·						
1.	ESC		Advanced Data Structures &	0	0	4	2	50	50

	2.5 0	Algorithms LAB 1	Ū	Ū	-	-	00	
2.	ESC	Machine Learning Lab	0	0	4	2	50	50
TOT	TAL		16	1	10	20	300	400

List of DSE 1:

1 Introduction to Intelligent Systems

- 2 Cyber security
- 3 Software Engineering
- 4 Fundamentals of Data Science
- 5 Advanced Web Technology

Any other subject offered from time to time with the approval of the University

List of Audit Courses:

- 1. Constitution of India
- 2. Disaster Management
- 3. Industrial Safety

Semester II

Sl.	Cours	Course	Course Name	Но	Hours per		rs per Credi		ark
INO	e	Code		V	veeк		t	<u> </u>	-
	Туре			L	T	P	C	CA	FA
The	ory								
1.	ESC		Big Data Analytics	3	1	0	4	40	60
2.	ESC		Advanced Database					40	60
			Management System	3	0	0	3		
3.	ESC		DSE 2	3	0	0	3	40	60
4.	ESC		DSE 3	3	0	0	3	40	60
Pra	ctical								
1.	ESC		Advanced Database	0	0	2	1	50	50
			Management System Lab						
2.	ESC		DSE 2 LAB	0	0	4	2	50	50
3.			Minor Project	0	0	8	4	50	50
TO	ΓAL		·	12	1	14	20	310	390

List of DSE 2:

- 1. Advanced Graph Theory
- 2. Image processing
- 3. Natural Language Processing
- 4. Compiler design

Any other subject offered from time to time with the approval of the University

List of DSE 3:

- 1. Data Communication and Computer Networks
- 2. Wireless Technologies for WSN & IoT
- 3. Cloud Computing

Any other subject offered from time to time with the approval of the University

Semester III

Sl.	Cours	Course	Course Name	Ho	Hours per Credi		Ma	ark											
No	e	Code		V	veek		veek		week		week		week		week		t		
	Туре			L	Т	Р	C	CA	FA										
The	ory																		
1.	ESC		Deep Learning	3	0	0	3	40	60										
2.	ESC		DSE 4	3	0	0	3	40	60										
Pra	ctical																		
1.	ESC		Deep Learning LAB	0	0	4	2	50	50										
2.	ESC		Dissertation Phase-I	0	0	24	12	200	200										
то	ΓAL			6	0	28	20	330	370										

List of DSE 4:

- 1. Crypto & Cyber Security
- 2. Fundamentals Of Bioinformatics
- 3. Advanced operating system
- Any other subject offered from time to time with the approval of the University

Semester IV

Sl. No	Course	Course	Course Name	Hour	s per week		veek Credit		Credit M		lark	
110	турс	Cout		L	Т	Р	С	CA	FA			
Projec	et											
1.	PCC		Dissertation Phase – II	0	0	36	18	300	300			
2.	AEC		Seminar	0	1	2	2	50	50			
TOT	AL			0	1	38	20	350	350			

Department of Computer Science and Engineering M.Tech – Computer Science & Engineering SEMESTER – I

BSC	Mathematical and Statistical Foundations	L	Т	Р	С			
250		3	0	0	3			
Prerequisite:	Basic Statistics							
Course Objec	tives:							
1. The Number	r Theory basic concepts useful for cryptography etc.							
2. The theory of Probability, and probability distributions of single and multiple random variables.								
3. The sampling theory and testing of hypothesis and making inferences.								
4. Stochastic p	4. Stochastic process and Markov chains.							
Course Outco	me:							
Upon completi	ion of this course, the student will be able to							
1. Apply the m	umber theory concepts to cryptography domain.							
2. Apply the co	oncepts of probability and distributions to some case studies.							
3. Correlate the	e material of one unit to the material in other units.							
4. Resolve the	potential misconceptions and hazards in each topic of study.							
Module: 1			9	9 hou	rs			
Greatest Co Euclideanalgon numbers.	mmon Divisors and Prime Factorization : Greatest comm rithm, The fundamental theorem of arithmetic, Factorization of inte	non gers a	diviso and th	ors, ne Fer	The mat			
Congruences : theorem,System	Introduction to congruences, Linear congruences, The ms of linear congruences.	Chine	se r	emain	ıder			
Module: 2				10 ho	urs			
Simple Linea	ar Regression and Correlation: Introduction to Linear Regre	ssion	, The	e Sin	nple			
LinearRegress	ion Model, Least Squares and the Fitted Model, Properties of	the	Least	Squ	ares			
Estimators,Info Case Study.	erences Concerning the Regression Coefficients, Prediction, Simple	e Line	ear R	egress	sion			
Random Va DiscreteProbal	riables and Probability Distributions : Concept of a bility Distributions, Continuous Probability Distributions, Statistical I	Rando Indepo	om enden	Varia ce.	ble,			

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

1,10,	dule: 3	10 hours
Cor Cur	tinuous Probability Distributions : Normal Distribution, Areas under the ve, Applications of the Normal Distribution, Normal Approximation to the Binomial.	he Normal
Fun San t–D	Idamental Sampling Distributions : Random Sampling, Sampling D pplingDistribution of Means and the Central Limit Theorem, Sampling Distribu- istribution, F-Distribution.	Distributions, tion of S2,
Mo	dule: 4	9 hours
Esti Esti betv	mating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Toler mating the Variance, Estimating a Proportion for single mean, Difference between ween Two Proportions for Two Samples and Maximum Likelihood Estimation.	ranceLimits, TwoMeans,
Mo	dule: 5	8 hours
Sto proc proc	chastic Processes and Markov Chains: Introduction to Stochastic processes cess.Transition Probability, Transition Probability Matrix, First order and Higher or cess,n-step transition probabilities, Markov chain, Steady state condition, Markov analys	es- Markov der Markov
Tot		
Tex	al hours	46 hours
	al hours t Book	46 hours
1.	al hours t Book Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Add ISBN 978 0-321-50031-1	46 hours
2.	al hours t Book Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Add ISBN 978 0-321-50031-1 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Engineers & Scientists, 9th Ed. Pearson Publishers.	46 hours 46 hours isonWesley, Statisticsfor
1. 2. Ref	 al hours t Book Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Add ISBN 978 0-321-50031-1 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Engineers & Scientists, 9th Ed. Pearson Publishers. 	46 hours isonWesley, Statisticsfor
1. 2. Ref	 al hours t Book Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Add ISBN 978 0-321-50031-1 Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Engineers & Scientists, 9th Ed. Pearson Publishers. erence Books S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publication 	46 hours 46 hours isonWesley, Statisticsfor tions

ESC	Advanced Data Structures & Algorithms		Т	Р	С				
		3	0	0	3				
Prerequisite: Knowledge of Data Structure									
Course Objec	tives:								
Students	s will be able to-								
1. To impart k	nowledge on advanced data structure and algorithms to analyze comp	lexity	of alg	gorith	ıms.				
2. The fundamental design, analysis, and implementation of basic data structures.									

Hathkhowapara, Azara, Guwahati781017,Assam

- 3. Significance of algorithms in the computer field.
- 5. Various aspects of algorithm development .

Course Outcome:

At the end of successful completion of the course, students will be able to-

- 1. Basic ability to analyze algorithms and to determine algorithm correctness and time efficiency class.
- 2. Master a variety of advanced abstract data type (ADT) and data structures and their implementations.
- 3. Master different algorithm design techniques (brute-force, divide and conquer, greedy, etc
- 4. Ability to apply and implement learned algorithm design techniques and data structures to solve problems.

Module: 1 Introduction

8 hours

7 hours

6 hours

6 hours

7 hours

Algorithms, Performance analysis- time complexity and space complexity, Asymptotic Notation-Big Oh, Omega and Theta notations, Complexity Analysis Examples. Data structures-Linear and non linear data structures, ADT concept, Linear List ADT, Array representation, Linked representation, Vector representation, singly linked lists -insertion, deletion, search operations, doubly linked lists-insertion, deletion operations, circular lists. Representation of single, two dimensional arrays, Sparse matrices and their representation.

Module:2 Hashing

Hashing – General Idea, Hash Function, Separate Chaining, Hash Tables without linked lists: Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Hash Tables in the Standard Library, Universal Hashing, Extendible Hashing.

Module:3 Priority Queues (Heaps)

– Model, Simple implementations, Binary Heap: Structure Property, Heap Order Property, Basic Heap Operations: insert, delete, Percolate down, Other Heap Operations. Binomial Queues: Binomial Queue Structure, Binomial Queue Operations, Implementation of Binomial Queue, Priority Queues in the Standard Library

Module:4 Trees

Trees – AVL: Single Rotation, Double Rotation, B-Trees. Multi-way Search Trees – 2-3 Trees: Searching for an Element in a 2-3 Tree, Inserting a New Element in a 2-3 Tree, Deleting an Element from a 2-3 Tree. Red-Black Trees – Properties of red-black trees, Rotations, Insertion, Deletion

Module:5 Graphs Algorithms

Elementary Graph Algorithms: Topological sort, Single Source Shortest Path Algorithms: Dijkstra's, Bellman-Ford, All-Pairs Shortest Paths: Floyd-Warshall's Algorithm.

Module: 6 Disjoint Sets and String Matching

7 hours

Disjoint Sets – Equivalence relation, Basic Data Structure, Simple Union and Find algorithms, Smart Union and Path compression algorithm.

String Matching – The naive string-matching algorithm, The Rabin-Karp algorithm, The

Hathkhowapara, Azara, Guwahati781017, Assam

Knuth-Morris-Pratt algorithm.

Module: 7 Basic algorithmic techniques

Greedy algorithms, divide & conquer, dynamic programming. Search techniques - backtracking, Sorting algorithms with analysis, integer sorting, selection sort. Graph algorithms: DFS and BFS with applications, MST and shortest paths.

Total Lecture hours

48 hours

7 hours

Textbook

- 1. Advanced Data Structures, Reema Thareja, S. Rama Sree, Oxford University Press, 2018
- 2. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, 4th Edition, 2014, Pearson.
- Introduction to Algorithms, Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, 3rd Edition, 2009, The MIT Press.

Reference Books

- Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahani and Rajasekharam, 2nd Edition, 2009, University Press Pvt. Ltd.
- S. Sahni, Data Structures, Algorithms, and Applications in C++, Silicon Press, 2/e, 2005.
 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 3/e, 2009.
- A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data Structures Using C and C++, Prentice Hall, 2/e, 1995.

МС	Research Methodology and IPR	L	Т	Р	C
		2	0	0	2
Prerequisite:		_			
Course Objec	tives:				
1. To impart k accomplishme	nowledge on research methodology and subsequent processes involve nt of the research.	ed for	succe	essful	
2. To impart k and trademark	nowledge on intellectual property rights and subsequent process invo registration process.	lved in	n filir	ng pat	ents
3. To inculcate	e attitude of reflective learning and contribute to the society through f	ruitful	l rese	arch.	
Course Outco	ime:				

Hathkhowapara, Azara, Guwahati781017,Assam

Upon completion of this course, the student will be able to

1. Apply the conceptual knowledge of research methodology to formulate the hypothesis, data collection and processing, analyzing the data using statistical methods, interpret the observations and communicating the novel findings through a research report.

2. Practice ethics and have responsibility towards society throughout the research process and indulge in continuous learning process.

3. Apply the conceptual knowledge of intellectual property rights for filing patents and trademark registration process.

Mo	dule: 1 Introduction to Research Methodology	6 hours
Obi	ectives and Motivation of Research Types of Research Defining and Formulating th	e Research
Pro	blem: Features of research design. Different Research Designs: Different Method	ls of Data
Col	lection, Data preparation and Processing.	
Mo	dule: 2 Data Analysis and Hypothesis Testing	8 hours
AN	OVA; Principles of least squares-Regression and correlation; Normal Distribution; Pr	operties of
Not	rmal Distribution; Testing of Hypothesis - Hypothesis Testing Procedure, Types	of errors,
t-D	istribution, Chi-Square Test as a Test of Goodness of Fit.	
Mo	dule: 3 Interpretation and Report Writing	4 hours
Inte	erpretation - Need, Techniques and Precautions; Report Writing - Significance, Diffe	erent Steps,
Lay	yout, Types of reports, Mechanics of Writing a Research Report, Precautions in Writin	ng Reports;
Res	earch ethics.	
Mo	dule: 4 Introduction to Intellectual property and Trademarks	6 hours
Imr	portance of intellectual property rights; types of intellectual property, international or	anizations:
Pur	pose and function of trademarks, acquisition of trademark rights, protectable matter, se	lecting and
eva	luating trademark, trademark registration processes.	U
Мо	dule: 5 Law of Copyrights	6 hours
Fur	damental of copy right law, originality of material, rights of reproduction, rights to perfor	m the work
pub	licly, copy right ownership issues, copyright registration, notice of copy right, international	tional copy
righ	nt law.	
Lan	a of notants. Foundation of notant law, notant scanshing measure, summarhin rights and the	
Lav	wor patents: Foundation of patent law, patent searching process, ownership rights and tra-	lister
Nev	w Developments in IPR: Administration of Patent System.	
Tot	tal hours	30 hours
Tex	xtbook	
1.	C.R. Kothari, Research Methodology: Methods and Techniques, 2nd revised edition	, New Age
	International Publishers, New Delhi, 2004.	
2.	Deborah, E. Bouchoux, Intellectual property right, 5th edition, Cengage learning, 2017.	

Re	ference Books
1.	Deborah, E. Bouchoux, Intellectual property right, 5th edition, Cengage learning, 2017.
2.	Prabuddha Ganguli, Intellectual property right - Unleashing the knowledge economy, Tata McGraw Hill Publishing Company Ltd, 2001.

		L	Т	Р	С			
ESC	Machine Learning	3	1	0	4			
Prerequisite:								
Course Objec	tives:							
Students will b	be able to-							
 Understand the basic theory underlying machine learning. Formulate machine learning problems corresponding to different applications. Understand a range of machine learning algorithms along with their strengths and weaknesses. Apply machine learning algorithms to solve problems of moderate complexity. Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models. 								
Course Outco	me:							
At the end of	successful completion of the course, students will be able to							
 Have learni Under Appre Learn Desig applic 	a good understanding of the fundamental issues and challenges ng: data, model selection, model complexity, etc. rstand the strengths and weaknesses of many popular machine le eciate the underlying mathematical relationships within and acro ing algorithms and the paradigms of supervised and un-supervise n and implement various machine learning algorithms in a rang rations.	of m arnin oss M sed le e of r	achir g apr achir earnir real-v	ne proac ne ng. world	hes.			
Module:1 (In	troduction)		1	8 Hoi	ırs			
Module:1 (Introduction) 8 Hours Definition of Learning systems; Goals and applications of Machine learning, Aspects of developing a learning system, training data, Problems, data and tools, supervised vs. unsupervised learning.								
Module:2 (Da	ta preprocessing and visualization)			8 Hoi	ırs			
Data cleanin visualization	g and preprocessing, Feature engineering, Handling Outliers, D	ata						
Module:3 (M	odel evaluation and selection)			6 Hoi	ırs			
Model perfo	rmance metrics, Bias-variance tradeoff, Cross-validation, Grid	searc	h					

Mo	dule:4 (Supervised learning)	10 Hours			
Linear regression, Logistic regression, Decision trees, Random forests, Support vector machines, Naive Bayes, K-nearest neighbors, Neural networks					
Mo	dule:5(Unsupervised learning)	7 Hours			
K-n ana	neans clustering, Hierarchical clustering, DBSCAN clustering, Principal compone lysis,	ent			
Mo	dule :6 (Applications of machine learning)	6 Hours			
Nat	ural language processing, Image recognition, Recommender systems, Fraud detec	tion			
Tot	al Lecture hours	46 hours			
Tex	t Book				
1.	Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 1st ed	1. 2006			
2.	Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and Ter Concepts, Tools, and Techniques to Build Intelligent Systems, Shroff/O'Reilly; ' edition (2022)	isorFlow: Third			
3	Tom Mitchell, Machine Learning, First Edition, McGraw- Hill (1997)				
Ref	erence Books				
1.	Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd., Th (2015)	ird edition			
2	Kevin Patrick Murphy, Machine Learning: a Probabilistic Perspective, MIT Pres	ss, 2012.			
3	Sebastian Raschka, Machine Learning Q and AI.				
4	David Barber, Bayesian Reasoning and Machine Learning, Cambridge Universit	ty Press			
5	Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction Computation and Machine Learning) MIT Press: second edition (2018)	(Adaptive			
6	A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning, Pu Cambridge University Press, 2020	blished by			
7	Yudi Pawitan, In All Likelihood: Statistical Modelling And Inference Using L Oxford University Press, 1st edition (2013)	ikelihood,			

		Software Engineering	L	Т	Р	C				
	ESC	5 5	3	0	2	4				
Pre	requisite:1	Basic programming skills and knowledge of database management sys	stem							
Cou	Course Objectives:									
Stuc	Students will be able to-									
1. T	o provide	the idea of decomposing the given problem into Analysis, Designing,	Imple	emen	tation					
Test	Testing and Maintenance phases									
2. T	2. To provide an idea of using various process models in the software industry according to given									
circu	circumstances.									
3. T are o	o gain the	knowledge of how Analysis, Design, Implementation, Testing and Ma in a software project.	inten	ance	proce	sses				
Cou	rse Outco	me:								
At t	he end of s	successful completion of the course, students will be able to								
	1. Design	n and plan software solutions to real problems.								
	2. Identif	fy a range of solutions and critically evaluate and justify proposed des	ign so	olutic	ons.					
	3. Test s	ystems in terms of general quality attribute and possible trade-offs pre	esente	d wit	hin th	ne				
	given	problem.								
	4. Apply	the knowledge, techniques, and skills in the development of a softwa	re pro	oduct.						
Mo	dule: 1				10 ho	urs				
Intr	oduction:	SE challenges - SE approach - Software process - Characteristics of	SW	⁷ proc	ess –	SW				
deve	elopment r	process model – S/W Engineering Paradigm – Software life cycle mod	lels.	-						
	rr									
Moo	dule: 2			:	8 hou	rs				
Soft	ware Req	uirements – Functional & non-functional – user-system requirement	engir	eerin	g pro	cess				
- fea	asibility st	udies – elicitation – validation & management – software prototyping	- S/V	N						
docu	umentation	n – Analysis and modeling.								
Ma	dular 2				10 ha					
Soft	wara Pro	iet Management S/W cost estimation Function point models	\overline{COC}	OMC	$\frac{10}{10}$					
Delt	shi method	I = S/W challenges = S/W maintenance	COC	OWIC) mot					
Mo	dule: 4	i 5/ Wendhenges 5/ Windhkendhee.			8 hou	rs				
Des	ign Conce	pts and Principles – Function-oriented software design – Object-orien	nted s	oftwa	are de	sign				
- Ol	bject mode	ling using UML – User interface design.				~-8				
Moo	dule: 5	· · ·			10 ho	urs				
Soft	ware Test	ting and Quality Management - Taxonomy of S/W testing - levels -	- blac	k box	testi	ng –				
Whi	te box tes	ting - regression testing- S/W testing strategies - unit testing - i	ntegr	ation	testi	ng –				
vali	validation testing – system testing and debugging, Quality concepts, quality assurance, software reviews,									
stati	statistical quality assurance.									
Tota	al Lecture	hours			46 ho	urs				
	Text Book									
1.	1. K. S. Fressman, Software Engineering - A practitioners approach, III Edition, MCOTaw Hill									
	Inter	national editions, 1992								
2.	Ian S	ommerville, Software Engineering, Pearson Education Asia, VI Edition	on, 20	000						
			,							
Ref	erence Bo	oks								

Hathkhowapara, Azara, Guwahati781017,Assam

1.	PankajJalote, An Integrated Approach to software Engineering, Springer Verlag, 1997
2.	James F. Peters and WitoldPedryez, Software Engineering – An Engineering Approach, John Wiley and Sons, New Delh

FSC	Advanced Data Structures & Algorithms I ab	L	Т	P	C				
LOU	Auvanceu Data Structures & Argorithmis Lab	0	0	4	2				
Prerequisite: Knowledge of Data Structure									
Course Ob	ectives:								
~ .									
Studen	ts will be able to-								
1. The fund	amental design, analysis, and implementation of basic data struct	ures.							
2. Basic cor	cepts in the specification and analysis of programs.								
3. Principles	for good program design, especially the uses of data abstraction	•							
4. To under	stand the sorting techniques								
5. To under	stand the non linear data structures 6. to learn bout the pattern ma	tchir	ıg						
Course Ou	come:								
At the end of	f successful completion of the course, students will be able to-								
1. Basi	c ability to analyze algorithms and to determine algorithm con	rectr	ness	and t	ime				
Effic	eiency class.								
2. Mas	er a variety of advanced abstract data type (ADT) and data st	ructu	ares a	and t	heir				
Imp	ementations.								
3. Mas	er different algorithm design techniques (brute-force, divide and	d cor	nquer	, gre	edy,				
etc.)									
4. Abil	ity to apply and implement learned algorithm design techniques	and d	lata s	struct	ures				

Practical Experiments:

to solve problems

1. Write Java/C/C++ programs that use both recursive and non-recursive functions for

Hathkhowapara, Azara, Guwahati781017, Assam

implementing the following searching methods:

a) Linear search b) Binary search

2. Write Java/C/C++ programs to implement the following using arrays and linked lists

a) List ADT

3. Write Java/C/C++ programs to implement the following using an array.

a) Stack ADT b) Queue ADT

4. Write a Java/C/C++ program that reads an infix expression and converts the expression to postfixform. (Use stack ADT).

5. Write a Java/C/C++ program to implement circular queue ADT using an array.

6. Write a Java/C/C++ program that uses both a stack and a queue to test whether the given string is a palindrome or not.

7. Write Java/C/C++ programs to implement the following using a singly linked list.

a) Stack ADT

b) Queue ADT

8. Write Java/C/C++ programs to implement the deque (double ended queue) ADT usinga) Array b) Singly linked list c) Doubly linked list.

9. Write a Java/C/C++ program to implement priority queue ADT.

10. Write a Java/C/C++ program to perform the following operations:

Hathkhowapara, Azara, Guwahati781017, Assam

a) Construct a binary search tree of elements.

b) Search for a key element in the above binary search tree

c) Delete an element from the above binary search tree.

11. Write a Java/C/C++ program to implement all the functions of a dictionary (ADT) using Hashing.

12. Write a Java/C/C++ program to implement Dijkstra's algorithm for Single source shortest path problem.

13. Write Java/C/C++ programs that use recursive and non-recursive functions to traverse the given binary tree in

a) Preorder b) Inorder c) Postorder.

14. Write Java/C/C++ programs for the implementation of bfs and dfs for a given graph.

15. Write Java/C/C++ programs for implementing the following sorting methods:

a) Bubble sort d) Merge sort g) Binary tree sort

b) Insertion sort e) Heap sort

c) Quick sort f) Radix sort

16. Write a Java/C/C++ program to perform the following operations:

a) Insertion into a B-tree b) Searching in a B-tree

17. Write a Java/C/C++ program that implements Kruskal's algorithm to generate minimum costspanning tree.

18. Write a Java/C/C++ program that implements KMP algorithm for pattern matching.

ES	C	MACHINE LEARNING LAB	L 0	Т 0	P 4	C 2
Prereg	uisite:Basic knowledge	e of Python/Java,C-C++	Ū	v	-	
Course Objectives:						
 Students will be able to– Understand the mathematical and statistical prospective of machine learning algorithms through python programming. Formulate machine learning problems corresponding to different applications. Apply a range of machine learning algorithms along with their strengths and weaknesses. 						
Course	e Outcome:					
At the	end of successful cor	npletion of the course, students will be able to				
1.	Design and evaluate	the unsupervised models through python in built	func	tions		
2.	Evaluate the machin engineering algorith	e learning models pre-processed through various ms by python programming.	featu	re		
3.	Design and apply va problems.	rious reinforcement algorithms to solve real time	com	plex		
4.	Design application u	using machine learning techniques				
Practio	cal experiments:			,	24 H	ours
1.	Write a programme	using Python to implement the Naive Bayes Cla	issifie	er.		
2.	Write a programme	using Python to implement the Decision Trees.				
3.	Write a programme	using Python to implement the Linear Regression	on wi	th on	e	
	variable.					
4.	Write a programme	using Python to implement the Linear Regression	on wi	th m	ultipl	e
	variable.					
5.	Write a programme	using Python to implement the Logistic Regress	ion v	vith 1	nulti	ple
	variables .					
6.	Write a programme	using Python to implement theBack-propagation	n Alg	orith	m.	
7.	Write a programme	using Python to implement the Artificial Neural	Netv	vork	•	

- 8. Write a programme using Python to implement the SVM.
- 9. Write a programme using Python to implement the K-means clustering algorithm.
- 10. Write a programme using Python to implement the PCA.

Tex	t Book
1.	Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, The MIT Press.
2.	Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education,
	2016.
Ref	erence Books
1.	C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2010.
۷	
	Andrew NG, "Machine Learning Yearning", Amazon.com Services LLC, Kindle
	Edition, 2019.

Hathkhowapara, Azara, Guwahati781017,Assam

Department of Computer Science and Engineering M.Tech - Computer Science & Engineering SEMESTER -II

ESC	Big Data Analytics	L 3	T 0	P 0	C 3	
Prerequisite: Basic knowledge of Mathematics/ Statistics/Programming						
Course Objectives:						
This course g	vives an overview of Big Data, i.e. storage, retrieval and process	ing o	f big	data.	In	
addition, it al	so focuses on the "technologies", i.e., the tools/algorithms that a	are av	vailat	ole fo	r	
storage, proc	essing of Big Data. It also helps a student to perform a variety of	f "ana	alytic	es" of	1	
different data	sets and to arrive at positive conclusions.		-			
Course Out	come:					
Learning (Dutcomes At the end of successful completion of the course, st	uden	ts wil	ll be a	able	
to	1					
CO1: Under	rstand Big Data and its analytics in the real world					
CO2 : Analy	ze the Big Data framework like Hadoop and NOSQL to efficien	ntly s	tore	and		
pr	ocess Big Data to generate analytics	•				
CO3 : Desig	n of Algorithms to solve Data Intensive Problems using Map Re	educe	e Para	adign	n	
CO4 :Desig	n and Implementation of Big Data Analytics using Spark to solv	e dat	a	•		
in	tensive problems and to generate analytic					
MODULE 1	:Introduction		1	10 Ho	ours	
Introduction	to Big Data introduction to Enabling Technologies for Big Da	ta ir	trodu	uction	n to	
Big Data Pla	to big Data, introduction to Big Data Storage Platforms for Large S	cale l	Data	Store		
introduction	to Big Data Streaming Platforms for Fast Data Relationships an	d Rei	orese	ntatio	nge,	
Graph Datab	ases	u nej	51030	main	<i>л</i> лз,	
MODULE 2	:Manreduce Programming		-	12 Ho	mrs	
Introduction	, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, C	Comp	ressi	on, F	Real	
time applicat	ions using MapReduce, Data serialization and Working with cor	nmor	ı seri	alizat	tion	
formats, Big	data serialization formats.					
MODULE 3	:Big Data Applications		1	12 Ho	ours	
Introduction	to Big Data Applications using machine learning					
MODULE 4	:Introduction to Spark			12Ho	urs	
Introduction	to Spark, introduction of big data Machine learning with	Spar	·k. I	angu	age	
processing w	with Spark. Analysis of Streaming Data with Spark Applicati	ons (of Sr	bark	ML	
Library Basic Neural Network and Tensor Flow						
Total hours				46 h a	ours	
Text Books						

1. Seema Acharya, Subhashini Chellappan, "Big Data Analytics", 1st Edition, Wiley, 2015

Reference Books

- 2. Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.
- 3. Chuck Lam, Hadoop in Action, December, 2010.
- 4. Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press.
 - 5. I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.
- 6. Erik Brynjolfsson et al., The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company, 2014

7. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", 1 st Edition, Wrox, 2013.

8. Chris Eaton, Dirk Deroos et. al., "Understanding Big data", Indian Edition, McGraw Hill, 2015.

9. Tom White, "HADOOP: The definitive Guide", 3 rd Edition, 0 Reilly, 2012.

10. Vignesh Prajapati, "Big Data Analytics with R and Hadoop", 1 st Edition, Packet Publishing Limited, 201

ESC	IMAGE PROCESSING	L 3	T 0	P 0	C 3	
Prerequisite:	Basic knowledge of Mathematics/ Statistics					
Course Objec	tives:					
Students will b	be able to-					
1. To stu	dy the image fundamentals and mathematical transforms necess	sary f	or in	nage		
proce	ssing.					
2. To st	udy the image enhancement techniques.					
3. To st	udy image restoration procedures.					
4. To st	udy the image compression procedures.					
Course Outco	me:					
Learning Outcomes At the end of successful completion of the course, students will be able						
CO1: Review the fundamental concepts of a digital image processing system. CO2 : Analyze images in the frequency domain using various transforms.						

Hathkhowapara, Azara, Guwahati781017,Assam

CO3 : Evaluate the techniques for image enhancement and image restoration.

CO4 : Categorize various compression techniques.

CO5: Interpret image segmentation and representation techniques.

Light, Brightness adaption and discrimination, Pixels, coordinate conventions, Imaging Geometry, Perspective Projection, Spatial Domain Filtering, sampling and quantization

MODULE 2:Spatial Domain Filtering

Intensity transformations, contrast stretching, histogram equalization, Correlation and convolution, Smoothing filters, sharpening filters, gradient and Laplacian

MODULE 3: Filtering in the Frequency Domain

Hotelling Transform, Fourier Transforms and properties, FFT (Decimation in Frequency and Decimation in Time Techniques), Convolution, Correlation, 2-D sampling, Discrete Cosine Transform, Frequency domain filtering

MODULE 4: Image Segmentation

Boundary detection based techniques, Point, line detection, Edge detection, Edge linking, local processing, regional processing, Hough transform, Thresholding, Iterative thresholding, Otsu's method, Moving averages, Multivariable thresholding, Region-based segmentation, Watershed algorithm, Use of motion in segmentation

MODULE 5:Image Restoration

Basic Framework, Interactive Restoration, Image deformation and geometric transformations, imagemorphing, Restoration techniques, Noise characterization, Noise restoration filters, Adaptive filters, Linear, Position invariant degradations, Estimation of Degradation functions, Restoration from projections

MODULE 6:Image Compression

9 hours

5 Hours

6 Hours

6 Hours

6 hours

6 Hours

Encoder-Decoder model, Types of redundancies, Lossy and Lossless compression, Entropy of an informationsource, Shannon's 1st Theorem, Huffman Coding, Arithmetic Coding, Golomb Coding, LZW coding, Transform Coding, Sub-image size selection, blocking artifacts, DCT implementation using FFT, Run length coding, FAX compression (CCITT Group-3 and Group-4), Symbol-based coding, JBIG-2, Bit-plane encoding, Bit-allocation, Zonal Coding, Threshold Coding, JPEG,Lossless predictive coding, Lossy predictive coding, Motion Compensation

MODULE6: Wavelet based Image Compression

6 hours

Expansion of functions, Multi-resolution analysis, Scaling functions, MRA refinement equation, Wavelet series expansion, Discrete Wavelet Transform (DWT), Continuous Wavelet Transform, Fast Wavelet Transform, 2-D wavelet Transform, JPEG-2000 encoding, Digital Image Watermarking

Hathkhowapara, Azara, Guwahati781017, Assam

MODULE7: Morphological Image Processing		6 hours			
Basics, SE, Erosion, Dilation, Opening, Closing, Hit-or-Miss Transform, Boundary Detection,					
Hole filling, connected components, convex hull, thinning, thickening,	skeleto	ns, pruning,			
Geodesic Dilation, Erosion, Reconstruction by dilation and erosion					
MODULE8: Case Studies		10			
Different case studies on applications of Image Processing					
Total hours 60 hours					
Text Book					
1. Digital Image Processing by Rafael C Gonzalez & Richard E Woods, 3rd E	Edition				
2. Fundamentals of Digital Image Processing by Anil K Jain					
Reference Books					
1. Digital Image Processing by William K Pratt					

FSC	Data Communication and Computer Networks	L	Т	Р	C
ESC		3	0	0	3
Prerequisi	te: Knowledge of Computer Networks				
Course Ob	jectives:				
Stude	nts will be able to-				
1. To	Focus on information sharing and networks.				
2. To	Introduce flow of data, categories of network, different topologies.				
3. To	Focus on different coding schemes.				
4. Brie	of the students regarding protocols and standards.				
5. To	give clear idea of signals, transmission media, errors in data commun	nicati	ons a	and t	heir
cor	rection, networks classes and devices, etc.				
Course Ou	itcome:				
At the end	of successful completion of the course, students will be able to-				
1.	The student will be having the basic knowledge of data sharing, transp	missi	on m	edia	and
	their protocols.				
2.	Student will have the basic knowledge of computer networks.				
3.	Students will be able to find out the shortest path from a source to dest	inatio	on no	ode.	
4.	Students will be able to find out error and correct it.				
5.	Students will be able to establish connection among different networks	5.			

Module: 1 Introduction to data communication and networking:

5 hours

Why study data communication?, Data Communication, Networks, Protocols and Standards,

Standard	s Organizations. Line Configuration, Topology, Transmission Modes, Categorie	s of
Network	s Internet works	
Module:	2 Study of OSI and TCP/IP protocol suit	5 hours
The Moc	lel, Functions of the layers, TCP/IP Protocol Suites	
Module:	3 Study of Signals	6 hours
Analog a	nd Digital, Periodic and Aperiodic Signals, Analog Signals, Time and Frequenc	y Domains
,Compos	ite Signals, Digital Signals	
Module:	4 Study of Digital and Analog transmission	8 hours
Digital to	Digital Conversion, Analog to Digital Conversion	
Module:	5Study of Multiplexing	5 hours
Many to	one/one to Many, Frequency division Multiplexing, Wage division Multiplex	xing, Time
division	Multiplexing, Multiplexing applications	
Module:	6 Types of transmission media:	4 hours
Guided I	Media, Unguided Media, Transmission Impairments, Performance Wavelength	, Shannon
Capacity	, Media Comparison, PSTN , Switching	
Module:	7Error Detection and Correction	7 hours
Error De	tection and Correction: Types of Errors, Detection, Parity Check, Vertical Redur	ndancy
Check L	ongitudinal Redundancy Check, Cyclic Redundancy Check, Checksum, Error Co	orrection
Module:	8 Study of DTE-DCE in brief	4 hours
Digital d	ata transmission, DTE-DCE Interface, Modems, 56K Modems , Cable Modems	
Module	9: Introduction to networks and devices	4 hours
Network	classes, Repeaters, Hub, Bridges, Switches, Routers, Gateways Routers	
Routing	Algorithms, Distance Vector Routing, Link State Routing	
Total Le	cture hours	48hours
Text Bo	oks	
1.	Data communication & Networking by Bahrouz Forouzan. 2.	
2.	Computer Networks by Andrew S. Tanenbaum	
Referen	ce Book	

1.

GIRIJANANDACHOWDHURYUNIVERSITY

Hathkhowapara, Azara, Guwahati781017,Assam

Data and Computer Communications by William Stallings

		T	T	р	C
FSC	Advanced Database Management System Lab	L	1	r	C
LSC		0	0	2	1
Prerequisite:	Basic programming skills	1			
Course Obje	ctives:				
Students wil	be able–				
1. To explo	re the features of a Database Management Systems				
2. To inter	ace a database with front end tools				
3. To unde	stand the internals of a database system				
Course Out	come:				
At the end o	successful completion of the course, students will be able to				
5. Appl	y various advanced queries such as relational constraints, joi	ns, se	et op	eratio	ons,
aggre	gate functions, trigger, views and embedded SQL				
6. Crea	e relational Database system.				
7. Anal	yze the internals of a database system.				
Fyneriments					
Students wil	perform experiments on the following tonics:				
Students wh	perform experiments on the following topics.				
1. Data	Definition Language Commands				
2. Data	Manipulation Language Commands				
3. Data	Control Language, Transfer control Language Commands				
4. In Bu	ilt Functions				
5. Nest	ed Queries and Join Queries				
6. Set C	perations				
7. View	S				
8. Cont	ol Structure				
9. Proce	edure and Function				
10. 10. T	rigger				
Total Lab ho	urs			30 ho	urs
Reference Bo	oks		~		
1. Abrah	am Silberschatz, Henry F. Korth, S. Sudharshan, "Database S	Syster	n Co	oncep	ts",
6 th edi	ion, Tata McGraw Hill, 2011				
2 Dom:	Elmori Chamkant D. Novatha "Evendamentals of Detahara Sou		",∧th	Ed:4	ion
2. Kame	r = 1 Emission mathematical between the second s	nems	,4"	Ealt	1011,
Pearso	Il/Addision westey, 2007				

ESC	IMAGE PROCESSING LAB	L	T ^	P	C
		0	0	4	2
Prerequisite: Basic	c knowledge of Python				
Course Objectives	:				
Students will be abl	e to-				
4 Understan	d the mathematical and statistical prospective of image processi	ng al	gorit	hms	

4. Understand the mathematical and statistical prospective of image processing algorithms through python programming.

5. Formulate image processing problems corresponding to different applications.

Hathkhowapara, Azara, Guwahati781017,Assam

6. Apply a range of image processing algorithms along with their strengths and weaknesses.

Course Outcome:

At the end of successful completion of the course, students will be able to

- 5. Design and evaluate the image processing algorithms through python in built functions.
- 6. Evaluate the machine learning models pre-processed through various feature engineering algorithms of image processing by python programming.
- 7. Design and apply various image processing algorithms to solve real time complex problems.
- 8. Design application using image processing techniques

Practical experiments:

11. Write a programme using Python to do analysis of spatial and intensity resolution of images.

30 Hours

images.

- 12. Write a programme using Python to implement Intensity transformation of images.
- 13. Write a programme using Python to implement DFT analysis of images
- 14. Write a programme using Python to implement the transforms

(i)Walsh, (ii) Hadamard, (iii) DCT (iv) Haar

- 15. Write a programme using Python to implement Histogram Processing.
- 16. Write a programme using Python to implement Image Enhancement-Spatial filtering
- 17. Write a programme using Python to implement Image Enhancement- Filtering in frequency domain
- Write a programme using Python to implement Image segmentation Edge detection, line detection and point detection
- 19. Write a programme using Python to implement basic Morphological operations.
- 20. Write a programme using Python to implement basic Thresholding functions
- 21. Write a programme using Python to do analysis of images with different color models.

MINI PROJECT(Any one):

- A. Applications to Biometric and security
- B. Applications to Medical Images

Hathkhowapara, Azara, Guwahati781017,Assam

C. Texture analysis with statistical properties 4. Boundary detection

Text Book

Digital Image Processing by Rafael C Gonzalez & Richard E Woods, 3rd Edition

Fundamentals of Digital Image Processing by Anil K Jain

Hathkhowapara, Azara, Guwahati781017,Assam

Department of Computer Science and Engineering M.Tech – Computer Science & Engineering SEMESTER –III

ESC	DEEP LEARNING	L 3	T 0	P 0	C 3
Prerequisite:	Basic knowledge of Statistics	5	U	U	5
Course Objec	tives:				
Students will b	be able to-				
1. Unde	rstand the mathematical and statistical prospective of deep learn	iing a	lgori	ithms	\$
throu	gh python programming.				
2. Form	ulate deep learning problems corresponding to different application	tions.			
3. Appl	y a range of deep algorithms along with their strengths and weak	iness	es.		
Course Outco	me:				
Learning	Dutcomes At the end of successful completion of the course, st	udent	ts wi	ll be a	able
8					
1 To under	stand the role of deep neural networks in engineering artificial	l intel	liger	nce a	and
cognitia	e modelling through the study of the most important deep neura	al net	work	mod	lels
cognitiv	e moderning through the study of the most important deep neur	ii net	WOIK	mou	U 15.
2. To solv	e the problems using various deep learning techniques.				
3 To desig	n application using deep learning techniques				
5. 10 4051g	n approaction using doop fourning cominques.				
Module 1:	Basics of Deep Learning]	11 Ho	ours
Biological No	euron, Idea of computational units, McCulloch–Pitts unit and T	hresh	oldi	ng lo	gic,
Linear Perce	ptron, Perceptron Learning Algorithm, Linear separability, Con	verge	ence	theor	rem
for Perceptro	n Learning Algorithm, Multilayer Perceptrons (MLPs), Repres	entat	ion F	Powe	r of
MLPs, Sigmo	oid Neurons, Gradient Descent: Momentum, Based GD, Nestero	v Acc	elera	ated (GD,
Stochastic G	D, AdaGrad, RMSProp, Adam, Feed forward Neural Networl	ss, R	epres	senta	tion
Power of Fee	d forward Neural Networks, Feed forward Neural Networks and	Back	c pro	pagat	tion
Module 2:	Deep Feed Forward Neural Networks:			12 Ho	ours
Gradient b	ased learning; hidden units; architecture design;	back	-prop	pagat	ion;
hyperparame	ters.Regularization and Practical Aspects of Deep Learning: F	Regul	ariza	tion	and
under-constra	nined problems, dataset augmentation, noise robustness, early s	stopp	ing,	bagg	ing,
dropout, nor	malizing inputs; vanishing/exploding gradients, weight initia	ılizati	on f	for d	eep
networks; hy	perparameter tuning; batch normalization.				
Module 3:	Convolution Neural Networks and Recurrent Neura	ıl]	12 Ho	ours
Networks					
Convolutiona	l Neural Networks, CNN architectures: LeNet, AlexNet, Z	ZF-Ne	et, V	/GGI	Net,
GoogLeNet,	ResNet, Recurrent Neural Networks, Back propagation through	igh t	ime	(BP7	ΓT),
Vanishing a	nd Exploding Gradients, Truncated BPTT, GRU, LSTMs.	Enco	der	Deco	oder

Models, Attention Mechanism, Attention over images

Mo	odule:4 Case studies	10 Hours
Ima	ge Classification/ Text Classification	
Tota	al hours	45 hours
Tex	t Book	
1.	Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Educ	cation,
	2016.	
2.	Nielsen, Michael A., Neural Networks and Deep Learning, 2015.	
Refe	erence Books	
1. 2	Chollet, Franois. Deep Learning with Python, 2017.	
	Buduma, Nikhil, and Nicholas Locascio, Fundamentals of Deep Learning: I	Designing
	Next-generation Machine Intelligence Algorithms, O'Reilly Media, Inc., 201	7.

Prorequicite: Basic knowledge of Puthon	2
Proraguisita, Basic knowledge of Python	
Trerequisite. Dasic knowledge of Tython	
Course Objectives	
Students will be able to	
7 Understand the mathematical and statistical prospective of deep learning algorithms	
7. Olderstand the matternatical and statistical prospective of deep learning algorithms	
unrougn python programming.	
8. Formulate deep learning problems corresponding to different applications.	
9. Apply a range of deep algorithms along with their strengths and weaknesses.	
Course Outcome	
Course Outcome:	
Learning Outcomes At the end of successful completion of the course, students will be ab	ole
1. To understand the role of deep neural networks in engineering, artificial intelligence, an	d
cognitive modelling through the study of the most important deep neural network mode	le
cognitive modelning through the study of the most important deep heard hetwork mode	10.
2 To solve the problems using various deep learning techniques	
2. To solve the problems using various deep learning techniques.	
3 To design application using deep learning techniques	
5. To design application using deep learning techniques.	
Practical experiments: 24 Hours	

Hathkhowapara, Azara, Guwahati781017,Assam

- 22. Write a program using Python to implement Self Organizing Maps (SOMs).
- 23. Write a program using Python to implement the Multilayer Perceptrons (MLPs)
- 24. Write a program using Python to implement the Radial Basis Function Networks.
- 25. Write a program to implement Autoencoder.
- 26. Write a program using Python to implement Convolutional Neural Networks (CNNs).
- 27. Write a program using Python to implement the Recurrent Neural Networks (RNNs).
- 28. Write a program using Python to implement the Long Short Term Memory Networks (LSTMs)
- 29. Write a program to implement encoder-decoder architecture with Attention Mechanism
- 30. Write a program using Python to implement the Generative Adversarial Networks (GANs).

Text Book

1.	Simon O. Haykin, "Neural Networks and Learning Machines", Pearson Education,
	2016.
2.	Nielsen, Michael A., Neural Networks and Deep Learning, 2015.
Df	
Kei	erence Books
Kei	erence Books
1. 2	Chollet, Franois. Deep Learning with Python, 2017.
1. 2	Chollet, Franois. Deep Learning with Python, 2017. Buduma, Nikhil, and Nicholas Locascio, Fundamentals of Deep Learning: Designing